Math, asked by kamalhajare543, 9 hours ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user

Solve the limit :-


\\ \sf \large \: \: \lim\limits_{x \to \infty} \bigg\{\dfrac{4x^{2} - 5x + 7}{2x - 3} \bigg\} = \infty \\ \\


No Spam
I want Full Solution​​

Answers

Answered by NITESH761
7

Answer:

\rm   ∞

Step-by-step explanation:

\sf \large \: \: \lim\limits_{x \to \infty} \bigg\{\dfrac{4x^{2} - 5x + 7}{2x - 3} \bigg\} = \infty \\

By L'Hôpitals rule,

 \rm \: \lim\limits_{x \to \infty} 4x-\dfrac{5}{2}

\rm = \lim\limits_{x \to \infty} \bigg( 4x \bigg)-\dfrac{5}{2}

\rm = 4 \lim\limits_{x \to \infty} \bigg( x \bigg)-\dfrac{5}{2}

\rm =  ∞


Aryan0123: Good !
Answered by Anonymous
12

Answer:

Step-by-step explanation:

We are asked to evaluate the following limit:

\lim\limits_{x \to \infty} \left\{\dfrac{4x^{2} - 5x + 7}{2x - 3} \right\}

We can see that factorisation of numerator is not possible, so let's divide all the terms by x.

 \implies\lim\limits_{x \to \infty} \left\{\dfrac{ \frac{4x^{2}}{x} -  \frac{5x}x +  \frac7x}{ \frac{2x}x - \frac 3x} \right\}

 \implies\lim\limits_{x \to \infty} \left\{\dfrac{ 4x -  5+  \frac7x}{2- \frac 3x} \right\}

Now substitute the limits.

 \implies\dfrac{ 4( \infty) -  5+  \frac7 \infty}{2- \frac 3 \infty}

 \implies\dfrac{ \infty-  5+ 0 }{2- 0}

 \implies\dfrac{ \infty }{2}

 \implies \infty

Therefore,  \lim\limits_{x \to \infty} \bigg\{\dfrac{4x^{2} - 5x + 7}{2x - 3} \bigg\} = \infty

\rule{280}{1}

We can also solve this problem by using L'Hôpital's rule according to which if we have any limits which results 0/0 or ∞/∞ form by direct substitution, then the following results holds true.

{  \lim \limits_{ x \to \infty}  \left \{ \dfrac{ f(x)}{g(x)}  \right \}=   \lim \limits_{ x \to \infty}\left \{  \dfrac{f'(x)}{g'(x)}\right \}}

Here, f'(x) and g'(x) are derivatives of functions f and g respectively.

By using the definition of L'Hôpital's rule, we have:

{\lim\limits_{x \to \infty} \left\{\dfrac{4x^{2} - 5x + 7}{2x - 3} \right\} = \lim\limits_{x \to \infty} \left\{\dfrac{ \frac{d}{dx}(4x^{2} - 5x + 7)}{ \frac{d}{dx}(2x - 3)} \right\}}

Now we will be using the following rules of derivative.

  • \boxed{ \dfrac{d}{dx}(x^n) = n x^{n-1}}
  •  \boxed{\dfrac{d}{dx}(k) = 0}

 \implies\lim\limits_{x \to \infty} \left\{\dfrac{8x - 5}{2} \right\}

Now by substituting the limits, we get:

 \implies\dfrac{8( \infty ) - 5}{2}

 \implies\dfrac{ \infty }{2}

 \implies \infty

Hence, the given limit is equal to ∞.


Aryan0123: Perfect !
Similar questions