Math, asked by kamalhajare543, 1 month ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user

\huge{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\red{0}\pink{N}}}}

\sf{if \: a \: b \: c \: and \: d \: are \: in \: proportion \: prove \: that} \\ \sf{abcd( \: \frac{1}{a}^{2} +\frac{1}{b}^{2}\frac{1}{c}^{2} \: \frac{1}{d}^{2})= {a}^{2} {b}^{2} {c}^{2}}
Please no spam. ​

Answers

Answered by Radhaisback2434
1

Step-by-step explanation:

2

Given that,

a+b+c=2,a

2 +b

2 +c

2 =1abc=3

Considering a+b+c=2 and squaring both sides

⟹a2 +b 2 +c 2+ 2ab+2bc+2ca=4

⟹2(ab+bc+ca)=4−1

⟹2(a)(b)(c)( a1 + b1 + c1 )=3

⟹2×3×( a1+b1+ c1)=3

⟹ a1 +b1+ c1

=2

Hope its help..

Answered by IIMASTERII
7

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\\\tt \longrightarrow\dfrac{a}{b}  =  \dfrac{c}{d} = k(const)\\

\\\tt \longrightarrow \: a= bk \:  \:  and \:  \: c = dk\\

\\\tt  \: \:  \longrightarrow  \:  \:  abcd \left( \dfrac{1}{a^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{c^{2}}+ \dfrac{1}{d^{2}} \right)\\

✠Now put the values –

\\\tt \: \: \longrightarrow \:  \:  (bk)b(dk)d \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\tt \: \:  \longrightarrow  \:  \: b^{2} {d}^{2} k^{2}  \left( \dfrac{1}{(bk)^{2} } + \dfrac{1}{b^{2}}+ \dfrac{1}{(dk)^{2}}+ \dfrac{1}{d^{2}} \right)\\

\\\tt \: \:   \longrightarrow \:  \: b^{2} {d}^{2} k^{2}  \left[\dfrac{ {d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}  }{b^{2}k^{2}d^{2}} \right]\\

\\\tt  \: \:  \red{ \longrightarrow  \:  \:{d}^{2} +  {d}^{2}  {k}^{2}  +  {b}^{2}  +  {b}^{2}  {k}^{2}}\\

\\\tt \: \:  \red{  \longrightarrow\:  \:{d}^{2} +{(dk)}^{2}  +  {b}^{2}  +  {(bk)}^{2}}\\

\\\tt  \: \:  \red{  \longrightarrow \:  \:{d}^{2} +c^{2}  +  {b}^{2}  +a^{2}}\\

\\\tt \: \:  \red{ \longrightarrow  \:  \:R.H.S}\\

✠Hence Proved

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Similar questions
Math, 16 days ago