Math, asked by kamalhajare543, 1 month ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
\pink{2cos \frac{\pi}{13} \cos \frac{9\pi}{13}+  \cos \frac{3\pi}{13}  +  \cos \frac{5\pi}{13}  = 0}
No spam
Solve it

Spammers Go Away​

Answers

Answered by missfairy01
73

__________________________________________

\huge\fcolorbox{pink}{Purple}{ ★Question✍︎}

2cos 13 π cos 13 9π +cos 13 3π +cos 13 5π =0

\huge\fcolorbox{pink}{Purple}{ ★Answer ✍︎}

L.H.S

2 \cos( \frac{\pi}{13} )  \cos( \frac{9\pi}{13} )  +  \cos( \frac{3\pi}{13} )  +  \cos( \frac{5\pi}{13} )

Using that:-

2 \cos \: a \:  \cos \: b \:  =  \: (a + b) +  \cos(a - b)

2  \cos \:  \frac{\pi}{13}  \cos \:  \frac{9\pi}{13}  +  \cos \:  \frac{3\pi}{13}  +  \cos \:  \frac{5\pi}{13}

 =  \cos \: ( \frac{\pi}{13}  +  \frac{9\pi}{13} ) \:  +  \:  \cos( \frac{\pi}{13}  -  \frac{9\pi}{13} ) +  \cos \:  \frac{3\pi}{13}  +  \cos \:  \frac{5\pi}{13}

 =  \cos \:  \frac{10\pi}{13}  +  \cos \: ( \frac{8\pi}{13} )  +  \cos \:  \frac{3\pi}{13}  +  \cos \:  \frac{5\pi}{13}  \cos \: (0 - ) \:  =  \:  \cos \: 0

 =  \cos \:  \frac{10\pi}{13  }  +  \:  \cos \: ( \frac{ - 8\pi}{13} ) +  \:  \cos \:  \frac{3\pi}{13}  +  \cos \:  \frac{5\pi}{13}

 =  \:  \cos \: (\pi -  \frac{3\pi}{13} ) +   \cos \: (\pi -  \frac{5\pi}{13} ) +  \cos \:  \frac{3\pi}{13}   +  \cos \:  \frac{5\pi}{13}  \:

 =  -  \cos \:   \frac{3\pi}{13}  -  \cos \:   \frac{5\pi}{13}  +  \cos \:  \frac{3\pi}{13}  +  \cos \:  \frac{5\pi}{13}

 =  \: 0.

R.HS

__________________________________________

\huge\fcolorbox{pink}{green}{ ★A᭄ΠSWΣRed by @MissFairy01 }

Similar questions