Math, asked by kamalhajare543, 1 day ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
Topic :- Trigonometry

1) Value of 'cos20° + cos80° - √3.cos50°'. 2) Value of 'cos0° + cosπ/7 + cos2π/7 + cos3π/7 + cos4π/7 + cos5π/7 + cos6π/7'.
3) cos20° + cos40° + cos60°4cos10°cos20°cos30°
4) cos20°cos100° + cos100°cos140°+cos140°cos200°
Question from class 9th Trigonometry.​

Answers

Answered by brainlychallenger99
5

Answer:

hey mate,

Step-by-step explanation:

EXPLANATION.

Question = 1.

⇒ Value of cos20° + cos80° - √3cos50°.

As we know that,

Formula of :

⇒ cos(C) + cos(D) = 2cos[C + D]/2. cos[C - D]/2.

Using this formula in the equation, we get.

⇒ cos(20°) + cos(80°) = 2cos[80° + 20°]/2 . cos[80° - 20°]/2.

⇒ 2cos[100°/2]. cos[60°/2].

⇒ 2cos(50°). cos(30°).

⇒ 2cos(50°).cos(30°) - √3cos50°.

As we know that,

Formula of :

⇒ cos30° = √3/2.

⇒ 2cos(50°) x (√3/2) - √3cos50°.

⇒ √3cos50° - √3cos50° = 0.

⇒ Value of cos20° + cos80° - √3cos50° = 0.

Question = 2.

⇒ Value of cosπ/7 + cos2π/7 + cos3π/7 + cos4π/7 + cos5π/7 + cos6π/7.

As we know that,

⇒ cos(π - θ) = - cosθ.

Using this formula in the equation, we get.

⇒ cosπ/7 + cos2π/7 + cos3π/7 + cos(π - 3π/7) + cos(π - 2π/7) + cos(π - π/7).

⇒ cos(π/7) + cos(2π/7) + cos(3π/7) - cos(3π/7) - cos(2π/7) - cos(π/7).

⇒ cos(0°) = 1.

Question = 3.

⇒ cos20° + cos40° + cos60° - 4cos10°. cos20°. cos30°.

As we know that,

Formula of :

⇒ cos(C) + cos(D) = 2cos[C + D]/2. cos[C - D]/2.

⇒ 2cos(A). cos(B) = cos(A + B) + cos(A - B).

Using this formula in the equation, we get.

⇒ cos20° + cos40° = 2[cos(40° + 20°)/2.cos(40° - 20°)/2].

⇒ 2cos(60°/2). cos(20°/2).

⇒ 2cos(30°).cos(10°).

⇒ cos(10°).cos(20°) = [cos(20° + 10°) + cos(20° - 10°)]/2.

⇒ [cos(30°) + cos(10°)]/2.

We can write equation as,

⇒ 2cos(30°).cos(10°) + cos(60°) - 4[cos(30°) + cos(10°)]/2. cos(30°).

⇒ 2cos(30°).cos(10°) + cos(60°) - 2[cos(30°) + cos(10°)]. cos(30°).

As we know that,

Formula of :

⇒ cos(30°) = √3/2.

⇒ cos(60°) = 1/2.

Using this formula in the equation, we get.

⇒ 2 x (√3/2).cos(10°) + 1/2 - 2[√3/2 + cos(10°)] . (√3/2).

⇒ √3cos(10°) + 1/2 - 2 x (√3/2) [√3/2 + cos(10°)].

⇒ √3cos(10°) + 1/2 - √3[√3/2 + cos(10°)].

⇒ √3cos(10°) + 1/2 - √3 x √3/2 - √3cos(10°).

⇒ 1/2 - 3/2.

⇒ (1 - 3)/2 = - 2/2 = - 1.

⇒ cos20° + cos40° + cos60° - 4cos10°. cos20°. cos30° = - 1.

Question = 4.

⇒ cos(20°).cos(100°) + cos(100°).cos(140°) + cos(140°).cos(200°).

As we know that,

Formula of :

⇒ 2cos(A). cos(B) = cos(A + B) + cos(A - B).

Using this formula in the equation, we get.

⇒ cos(20°).cos(100°) = [cos(100° + 20°) + cos(100° - 20°)]/2.

⇒ cos(20°).cos(100°) = [cos(120°) + cos(80°)]/2.

⇒ cos(100°).cos(140°) = [cos(140° + 100°) + cos(140° - 100°)]/2.

⇒ cos(100°).cos(140°) = [cos(240°) + cos(40°)]/2.

⇒ cos(140°).cos(200°) = [cos(200° + 140°) + cos(200° - 140°)]/2.

⇒ cos(140°).cos(200°) = [cos(340°) + cos(60°)]/2.

We can write equation as,

⇒ [cos(120°) + cos(80°)]/2 + [cos(240°) + cos(40°)]/2 + [cos(340°) + cos(60°)]/2.

⇒ 1/2 [ cos(120°) + cos(80°) + cos(240°) + cos(40°) + cos(340°) + cos(60°)].

As we know that,

Formula of :

⇒ cos(120°) = - 1/2.

⇒ cos(240°) = - 1/2.

⇒ cos(60°) = 1/2.

Using this formula in the equation, we get.

⇒ 1/2 [ -1/2 + cos(80°) + (-1/2) + cos(40°) + cos(340°) + 1/2].

⇒ 1/2 [ cos(80°) + cos(40°) + cos(340°) - 1/2].

As we know that,

Formula of :

⇒ cos(C) + cos(D) = 2cos[C + D]/2. cos[C - D]/2.

Using this formula in the equation, we get.

⇒ 1/2 [ 2cos(80° + 40°)/2. cos(80° - 40°)/2 + cos(340°) - 1/2].

⇒ 1/2 [ 2cos(120°)/2 . cos(40°)/2 + cos(340°) - 1/2].

⇒ 1/2 [ 2cos(60°). cos(20°) + cos(180° x 2 - 20°) - 1/2].

⇒ 1/2 [ 2 x 1/2 . cos(20°) - cos(20°) - 1/2.].

⇒ 1/2 [ cos(20°) - cos(20°) - 1/2].

⇒ 1/2 [ - 1/2].

⇒ - 1/4.

⇒ cos(20°).cos(100°) + cos(100°).cos(140°) + cos(140°).cos(200°) = - 1/4.

thank you

Similar questions