Math, asked by Anonymous, 1 month ago

♧ Bʀᴀɪɴʟʏ Sᴛᴀʀs

♧ Mᴏᴅᴇʀᴀᴛᴇʀs


    \color{lime}\huge\pmb{\mathcal{ Pʀᴏvᴇ \:  \:  THᴀᴛ}}

\mathtt{ \dfrac{ \cos \theta}{1 -  \tan \theta} +  \dfrac{ \sin \theta}{1 -  \cot \theta} =  \cos \theta  +  \sin \theta}

Answers

Answered by Anonymous
105

\huge\red{❥︎}\mathfrak\red{ANSWER}

 \frac{cosΦ}{1\frac{sinΦ}{cosΦ} }  +  \frac{sinΦ}{1 -  \frac{cosΦ}{sinΦ} }

 \frac{cosΦ}{ \frac{cosΦ - sinΦ}{cosΦ} }  +  \frac{sinΦ}{ \frac{sinΦ - cosΦ}{sinΦ} }

 \frac{ {cos}^{2Φ} }{cosΦ - sinΦ}  +  \frac{ {sin}^{2Φ} }{sinΦ - cosΦ}

 -  \frac{ {cos}^{2Φ} }{cosΦ - sinΦ}  +  \frac{ {sin}^{2Φ} }{cosΦ - sinΦ}

 \frac{ {sin }^{2Φ   -  {cos}^{2Φ}   } }{cosΦ - sinΦ}

 \frac{(sinΦ + cosΦ)(sinΦ - cosΦ)}{sinΦ -cosΦ }

➪sinΦ+cosΦ answer.....

\huge\{\boxed{\colorbox{pink}{Hope it'z help you ♡︎}}

Answered by IƚȥCαɳԃყBʅυʂԋ
134

Solution:-

 \frac{ \frac{ \cosθ }{1 -  \sinθ } }{ \cosθ }  +  \frac{ \sinθ }{ \frac{1 -  \cosθ }{ \sinθ }  }

 \frac{ \cos {}^{2} θ }{     \cosθ   -  \sinθ }  +  \frac{ \sin {}^{2} {θ}^{}  }{ \sinθ  -  \cosθ }

 \frac{ \cos {}^{2}  {θ}^{} -  \sin {}^{2} θ  }{ \cosθ  -  \sinθ }

 \frac{ (\cosθ -  \sinθ )( \cosθ  +  \sinθ }{ \cosθ -  \sinθ  }

 = ( \cosθ +  \sinθ)

Hope it helps you.

Similar questions