Math, asked by SparklingBoy, 1 month ago


༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs


 \huge \bf  \color{navy}{QU} \color{purple}{ES}  \color{blue}TI \color{skyblue}ON\  \textless \ br /\  \textgreater \

Find Thr Value of :-
 \bf \large \lim_{x \to 1 {}^{ - } } \frac{  \sqrt{\pi} -   \sqrt{2  {sin}^{ - 1 } x} }{ \sqrt{1 - x} }

➽ Explanation Is compulsory.
➽No Spam and No copy.
☆》 Otherwise Reported And Deleted​

Answers

Answered by mathdude500
54

\large\underline{\sf{Solution-}}

\rm :\longmapsto \displaystyle  \lim_{x \to 1 {}^{ - } } \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } x} }{ \sqrt{1 - x} }

To evaluate this limit,

\rm :\longmapsto\:Put \: x = 1 - y \:  \: so \: thay \: y \:  \to \: 0

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } (1 - y)} }{ \sqrt{1 - (1 - y)} }

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } (1 - y)} }{ \sqrt{y} }

If we directly Substitute y = 0, then

\rm \:  =  \:  \: \displaystyle \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } (1 - 0)} }{ \sqrt{0} }

\rm \:  =  \:  \: \displaystyle \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } 1} }{ 0 }

\rm \:  =  \:  \: \displaystyle \frac{ \sqrt{\pi} - \sqrt{2  \times \dfrac{\pi}{2} } }{ 0 }

\rm \:  =  \:  \: \displaystyle \frac{ \sqrt{\pi} - \sqrt{ \pi} }{ 0 }

\rm \:  =  \:  \: \displaystyle \frac{0 }{ 0 }

which is meaningless.

So, Consider again

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } (1 - y)} }{ \sqrt{y} }

Now Using L - Hospital Rule, we get

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \frac{\dfrac{d}{dy}  \sqrt{\pi} -\dfrac{d}{dy} \sqrt{2 {sin}^{ - 1 } (1 - y)} }{\dfrac{d}{dy} \sqrt{y} }

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \dfrac{0 -  \dfrac{1}{2 \sqrt{ 2{sin}^{ - 1} (1 - y)}}\dfrac{d}{dy} 2{sin}^{ - 1}(1 - y)}{\dfrac{1}{2 \sqrt{y} } }

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \dfrac{- 2 \:  \dfrac{1}{\sqrt{2 {sin}^{ - 1} (1 - y)}}\dfrac{1}{ \sqrt{1 -  {(1 - y)}^{2} } }\dfrac{d}{dy}(1 - y)}{\dfrac{1}{ \sqrt{y} } }

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \dfrac{- 2 \:  \dfrac{1}{\sqrt{ 2{sin}^{ - 1} (1 - y)}}\dfrac{1}{ \sqrt{1 -  {(1 - y)}^{2} } }( - 1)}{\dfrac{1}{ \sqrt{y} } }

\rm \:  =  \:  \: \displaystyle  \lim_{y \to 0} \dfrac{ 2 \:  \dfrac{1}{\sqrt{2 {sin}^{ - 1} (1 - y)}}\dfrac{1}{ \sqrt{1 -  {(1 - y)}^{2} } }}{\dfrac{1}{ \sqrt{y} } }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{2 {sin}^{ - 1} 1} } \displaystyle\large \lim_{y \: \to 0} \frac{ \sqrt{y}  }{ \sqrt{1 -  {(1 - y)}^{2} } }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{2 \times  \dfrac{\pi}{2}}} \displaystyle\large \lim_{y \: \to 0} \frac{ \sqrt{y}  }{ \sqrt{1 -  {(1 + y}^{2} - 2y) } }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{\pi}} \displaystyle\large \lim_{y \: \to 0} \frac{ \sqrt{y}  }{ \sqrt{1 -  {1 - y}^{2}  +  2y} }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{\pi}} \displaystyle\large \lim_{y \: \to 0} \frac{ \sqrt{y}  }{ \sqrt{2y-  {y}^{2}} }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{\pi}} \displaystyle\large \lim_{y \: \to 0} \frac{ \sqrt{y}  }{ \sqrt{y(2-  {y})} }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{\pi}} \displaystyle\large \lim_{y \: \to 0} \frac{ 1 }{ \sqrt{(2-  {y})} }

\rm \:  =  \:  \:\dfrac{2}{ \sqrt{\pi}}  \times  \dfrac{1}{ \sqrt{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{2}  \times  \sqrt{2} }{ \sqrt{\pi}}  \times  \dfrac{1}{ \sqrt{2} }

\rm \:  =  \:  \:\dfrac{ \sqrt{2}}{ \sqrt{\pi}}

\rm \:  =  \:  \: \sqrt{\dfrac{2}{\pi} }

Hence,

 \purple{ \boxed{\rm :\longmapsto \displaystyle  \lim_{x \to 1 {}^{ - } }  \bf\frac{ \sqrt{\pi} - \sqrt{2 {sin}^{ - 1 } x} }{ \sqrt{1 - x} } =  \sqrt{\dfrac{2}{\pi}  \: } \:  \:  \:  \:  \:  \:  \:  \: }}

Formula Used :-

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}x= 1}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx} {sin}^{ - 1}x  =  \frac{1}{\sqrt{1 -  {x}^{2} } } }}}

Additional Information :-

 \red{\boxed{ \bf{ \:  \displaystyle \lim_{x \to \: 0 \: } \:  \: \frac{sinx}{x}  \: =  \: 1}}}

 \red{\boxed{ \bf{ \:  \displaystyle \lim_{x \to \: 0 \: } \:  \: \frac{tanx}{x}  \: =  \: 1}}}

 \red{\boxed{ \bf{ \:  \displaystyle \lim_{x \to \: 0 \: } \:  \: \frac{log(1 + x)}{x}  \: =  \: 1}}}

 \red{\boxed{ \bf{ \:  \displaystyle \lim_{x \to \: 0 \: } \:  \: \frac{ {e}^{x}  - 1}{x}  \: =  \: 1}}}

 \red{\boxed{ \bf{ \:  \displaystyle \lim_{x \to \: 0 \: } \:  \: \frac{ {a}^{x}  - 1}{x}  \: =  \: loga}}}

Answered by rohithkrhoypuc1
17

Answer:

\underline{\purple{\ddot{\Mathsdude}}}

♧♧Answered by Rohith kumar maths dude :-

I posted your answer on attachment refer it.

Hope it helps u @Parth yadav10056.

Attachments:
Similar questions