Math, asked by krandj27, 1 month ago

*(b) Show that, if A(0,0), B(0, 10), C(8, 16)
and D(8, 6) are the four points then
ABCD is a rhombus. Find the lengths of
the diagonals of the rhombus.​

Answers

Answered by bharti046
3

Given:-

  • Points of a Rhombus ABCD are as follows A(0,0), B(0,10), C(8,16) & D(8,6).

To Find:-

  • Length of the Diagonals of the Rhombus.

Solution:-

Diagonals of the Rhombus are AC & BD

\boxed{\sf{☆\; Distance\; between\; two\;points = \sqrt{(x_2-x_1)²+(y_2-y_1)²}\;units}}

AC

→\;{\sf{\sqrt{(8-0)²+(16-0)²}}}

→\;{\sf{\sqrt{8²+16²}}}

→\;{\sf{\sqrt{320}}}

→\;{\bf{8\sqrt{5}}}

  • Length of AC = 8√5 units

BD

→\;{\sf{\sqrt{(8-0)²+(6-10)²}}}

→\;{\sf{\sqrt{8²+(-4)²}}}

→\;{\sf{\sqrt{80}}}

→\;{\bf{4\sqrt{5}}}

  • Length of BD = 4√5 units

\Large{\pink{\sf{@bharti046࿐}}}

Hope It Helps You ✌️

Similar questions