B) Verify that 1.-1.-3 are the zeroes of the cubic polynomial x3+3x2
-x-3 and check
the relation between the zeroes and coefficients
Answers
Solution :
It is given that :
- P(x) = x³ + 3x² - x - 3
P( 1 ) = ( 1 )³ + 3( 1 )² - ( 1 ) - 3
= 1 + 3 - 1 - 3
= 4 - 4
= 0
Hence, 1 is the zero of the given polynomial.
Now,
P( - 1 ) = ( - 1 )³ + 3(- 1 )² - ( - 1 ) - 3
= - 1 + 3 + 1 - 3
= 2 - 2
= 0
Hence, - 1 is the zero of the given polynomial.
Also,
P( - 3 ) = ( - 3 )³ + 3 (- 3 )² - ( - 3 ) - 3
= - 27 + 3 × 9 + 3 - 3
= - 27 + 27 + 0
= 0
Hence, - 3 is the zero of the given polynomial.
Now,
- α = 1
- β = -1
- λ = - 3
→ α + β + λ = - coefficient of x² / coefficient of x³
Substitute the values.
We get,
1 + ( - 1 ) + ( - 3 ) = - 3 / 1
⇒ - 3 = - 3
∴ L.H.S = R.H.S
→ αβ + βλ + λα = coefficient of x/ coefficient of x³
Substitute the given values.
We get,
1 ×( - 1 ) + ( - 1 ) ( - 3 ) + ( - 3 )( 1 ) = - 1/1
⇒ - 1 + 3 - 3 = -1/1
⇒ - 1 + 0 = -1
⇒ - 1 = - 1
∴ L.H.S = R.H.S
→ αβλ = Constant term/ coefficient of x³
Substitute the given values.
We get,
1 × ( - 1 ) × ( - 3 ) = 3/1
⇒ 3 = 3
∴ L.H.S = R.H.S
Hence proved!
It is given that :
P(x) = x³ + 3x² - x - 3
P( 1 ) = ( 1 )³ + 3( 1 )² - ( 1 ) - 3
= 1 + 3 - 1 - 3
= 4 - 4
= 0
Hence, 1 is the zero of the given polynomial.