Math, asked by aborgohain987, 1 month ago

b) What is the number of all possible
2x 3 matrices with entries
O or 1
?​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let us consider a matrix of order 2 × 3 as

\rm :\longmapsto\:Let \: A \:  =  \: \: \begin{bmatrix} a_{11} &  a_{12}&  a_{13}\\ a_{21} & a_{22}&  a_{23}\end{bmatrix}

Now,

\rm :\longmapsto\:a_{11} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{11}

↝ Again,

\rm :\longmapsto\:a_{12} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{12}

↝ Again,

\rm :\longmapsto\:a_{13} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{13}

↝ Again,

\rm :\longmapsto\:a_{21} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{21}

↝ Again,

\rm :\longmapsto\:a_{22} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{22}

↝ Again,

\rm :\longmapsto\:a_{23} \: can \: take \: the \: value \: either \: 0 \: or \: 1.

\rm :\longmapsto\: \therefore \: there \: are \: 2 \: ways \: to \: fill \: the \: place \: a_{23}

Therefore,

↝  By Fundamental Principal of Counting,

\rm :\longmapsto\:Possible \: number \: of \: matrices = 2 \times 2 \times 2 \times 2 \times 2 \times 2

\bf\implies \:Possible \: number \: of \: matrices =  {2}^{6} = 64

Additional Information :-

↝ Let us assume a matrix of order m × n,

where

  • m represents number of rows

and

  • n represents number of columns,

then

↝ Order of matrix provides the following Information,

  • 1. Number of elements in matrices = mn

  • 2 Number of elements in each row = number of columns.

  • 3. Number of elements in each column = number of rows.

Answered by SparklingThunder
0

 \huge  \purple{ \underline{ \boxed{ \red{ \mathbb{ANSWER : }}}}}

 \red{ \textsf{The number of all possible matrices of order 2x3 with entry 1 or 0 are 64 .}}

 \huge  \purple{ \underline{ \boxed{ \red{ \mathbb{EXPLANATION : }}}}}

 \large \green{ \underline{ \underline{ \mathbb{GIVEN : }}}}

 \orange{ \textsf{A matrix with order 2 x 3 :}}

 \orange{\left[ \begin{array}{c c c} \bf{a11}&\bf{a12}& \bf{a13} \\ \bf{a21}&\bf{a22}&\bf{a23} \end{array}\right]}

 \orange{ \textsf{Having entries 1 and 0 .}}

 \large \green{ \underline{ \underline{ \mathbb{SOLUTION : }}}}

 \red{ \textsf{a11 can have two entries 1 and 0 .}} \\  \red{ \textsf{a12 can have two entries 1 and 0 .}} \\  \red{ \textsf{a13 can have two entries 1 and 0 .}} \\  \red{ \textsf{a21 can have two entries 1 and 0 .}} \\  \red{ \textsf{a22 can have two entries 1 and 0 .}} \\  \red{ \textsf{a23 can have two entries 1 and 0 .}}

 \red{ \textsf{Therefore , The number of all possible matrices of order 2 x 3 with entry 1 or 0 are :}}

 \red{ \longrightarrow{ \mathbb{2 \times 2 \times 2 \times 2 \times 2 \times 2}}}

\red{ \longrightarrow{ \mathbb{ {2}^{6} }}}

\red{ \longrightarrow{ \mathbb{64}}}

 \large \green{ \underline{ \underline{ \mathbb{KNOW   \: MORE : }}}}

  \orange{\mathbb{MATRIX : }}

A matrix is an rectangular array having 'm' number of rows and 'n' number of columns .

 \orange{ \mathbb{ORDER  \: OF  \: MATRIX :}}

A matrix having 'm' number of rows and 'n' number of columns is said to be matrix of order m x n .

Similar questions