Math, asked by geenukuntapooja, 3 months ago

b) When a polynomial 3x3 + 2x2 + ax + b is divided by (x + 2) leaves
remainder 4 and (x-3) leaves remainder -1. Find 'a' and 'b'.​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given polynomial is

\sf \:  {3x}^{3} +  {2x}^{2}  + ax + b \\  \\

Let assume that

\sf \:  f(x) = {3x}^{3} +  {2x}^{2}  + ax + b -  -  -  - (1) \\  \\

It is given that, when f(x) is divided by (x + 2), it leaves the

remainder 4.

So, using Remainder Theorem, we have

\sf \: f( - 2) = 4 \\  \\

\sf \:  {3( - 2)}^{3} +  {2( - 2)}^{2}  + a( - 2) + b = 4 \\  \\

\sf \:   - 24+  8  - 2 a+ b = 4 \\  \\

\sf \:   - 16  - 2 a+ b = 4 \\  \\

\sf \:  \sf \:  \implies \: b = 2a + 20 -  -  - (2) \\  \\

Further, given that when f(x) is divided by (x - 3), it leaves the remainder - 1.

So, by using Remainder Theorem, we have

\sf \:  {3(3)}^{3} +  {2(3)}^{2}  + a(3) + b  =  - 1\\  \\

\sf \: 81 + 18  + 3a + b  =  - 1\\  \\

On substituting the value of b from equation (2), we get

\sf \: 99  + 3a + 2a + 20  =  - 1\\  \\

\sf \: 119  + 5a  =  - 1\\  \\

\sf \:  5a  =  - 1 - 119\\  \\

\sf \:  5a  =  - 120\\  \\

\bf\implies \:a \:  =  \:  -  \: 24\\  \\

Substituting the value of a in equation (2), we get

\sf \: b = 2( - 24) + 20 \\  \\

\sf \: b =  - 48+ 20 \\  \\

\sf \:\bf\implies \: b =  - 28\\  \\

\rule{190pt}{2pt}

Basic Concept Used :-

Remainder Theorem :- This theorem states that if a polynomial f(x) of degree greater than or equals to 1 is divided by x - a, then remainder is f(a).

\rule{190pt}{2pt}

Additional Information

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions