Math, asked by swatigaikwad512009, 1 year ago

(b)
Without using trigonometrical tables, evaluate:
5 cos 0° - 2 sin 30° + V3 cos 30°
- +3 sin 29° sec 61°
tan 30° x tan 60° x cos 60°​

Answers

Answered by harendrachoubay
6

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=\dfrac{11}{7}

Step-by-step explanation:

We have,

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}

To find, \dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=?

\dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}

=\dfrac{5(1)-2(\dfrac{1}{2} )+\sqrt{3}(\dfrac{\sqrt{3}}{2} )}{\dfrac{1}{\sqrt{3}} \times \sqrt{3} \times (\dfrac{1}{2})+ 3\sin29 \sec (90-29)}

We know that,

The trigonometric identity,

\sin30= \dfrac{1}{2}, \cos30 =\dfrac{\sqrt{3}}{2} , \cos 0=1, \cos60=\dfrac{1}{2},

\tan30=\dfrac{1}{\sqrt{3}} and \tan60=\sqrt{3}

=\dfrac{5-1+\dfrac{3}{2}}{\dfrac{1}{2}+ 3\sin29 \csc 29}

Using the trigonometric identity,

\sec (90-A)=\csc A

=\dfrac{4+\dfrac{3}{2}}{\dfrac{1}{2}+ 3\sin29\dfrac{1}{\sin29}}

=\dfrac{\dfrac{8+3}{2}}{\dfrac{1}{2}+ 3(1)}

=\dfrac{\dfrac{11}{2}}{\dfrac{1+6}{2}}

=\dfrac{\dfrac{11}{2}}{\dfrac{7}{2}}

=\dfrac{11}{7}

Hence, \dfrac{5\cos 0-2\sin30+\sqrt{3}\cos 30}{\tan30\times \tan60\times \cos60+ 3\sin29 \sec61}=\dfrac{11}{7}

Similar questions