Math, asked by ishrataafreen012, 3 months ago

बाय सेलिंग न टाइप ऑफ रूपीस 252 शॉपकीपर गेम्स 5% अट व्हाट प्राइस शोल्ड ई सेल द काइट गेम 30% ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

Given

\begin{gathered} \to \sf \int \dfrac{9 {r}^{2} }{ \sqrt{1 - {r}^{3} } } dr \\ \end{gathered}

→∫

1−r

3

9r

2

dr

Using Substitution Method ,Let

\to \sf \: 1 - {r}^{3} = u→1−r

3

=u

Now Differentiate on both side wrt r

\sf \to \dfrac{d(1 - {r}^{3} )}{dr} = \dfrac{du}{dr}→

dr

d(1−r

3

)

=

dr

du

\sf \to \: - 3 {r}^{3 - 1} = \dfrac{du}{dr}→−3r

3−1

=

dr

du

\sf \to \: - 3 {r}^{2} = \dfrac{du}{dr}→−3r

2

=

dr

du

\sf \to \: (3 {r}^{2} )dr = - du→(3r

2

)dr=−du

Now we can write as

\begin{gathered} \to \sf3 \int \dfrac{3 {r}^{2} }{ \sqrt{1 - {r}^{3} } } dr \\ \end{gathered}

→3∫

1−r

3

3r

2

dr

Put the value

\begin{gathered} \sf \to \: 3\int \dfrac{ - du}{ \sqrt{u} } \\ \end{gathered}

→3∫

u

−du

\begin{gathered} \sf \to \: - 3\int \dfrac{ du}{ \sqrt{u} } \\ \end{gathered}

→−3∫

u

du

\begin{gathered}\sf \to \: - 3\int \dfrac{ du}{ {u} {}^{ \frac{1}{2} } } \\ \end{gathered}

→−3∫

u

2

1

du

\begin{gathered} \sf \to \: - 3 \int ({u}^{ \frac{ - 1}{2} } )du \\ \end{gathered}

→−3∫(u

2

−1

)du

\sf \to \: - 3 \bigg( \dfrac{u {}^{ \frac{ - 1}{2} + 1 } }{ \dfrac{ - 1}{2} + 1} \bigg) + c→−3(

2

−1

+1

u

2

−1

+1

)+c

\sf \to \: - 3 \bigg( \dfrac{ {u}^{ \frac{ - 1 + 2}{2} } }{ \dfrac{ - 1 + 2}{2} } \bigg) + c→−3(

2

−1+2

u

2

−1+2

)+c

\sf \to - 3 \bigg( \dfrac{u {}^{ \frac{1}{2} } }{ \dfrac{1}{2} } \bigg) + c→−3(

2

1

u

2

1

)+c

\sf \to - 3(2 {u}^{ \frac{ 1 }{2} } ) + c→−3(2u

2

1

)+c

\sf \to \: - 6( \sqrt{u} ) + c→−6(

u

)+c

Now put the value

\to \sf \: 1 - {r}^{3} = u→1−r

3

=u

We get

\sf \to - 6( \sqrt{1 - {r}^{3} } ) + c→−6(

1−r

3

)+c

Answer

\sf \to - 6( \sqrt{1 - {r}^{3} } ) + c→−6(

1−r

3

)+c

Answered by 831ishikashukla
0

Step-by-step explanation:

Let the Cost Price be Rs a

Gain percent = 5 %  

Selling price = 252

=> Cost Price + Gain = 252

=> a + 5 % of a = 252

=> a + 5a/ 100 = 252

=> a + a/20 = 252

=> 21a/20 = 252

=> a = 252 × 20 / 21

=> a = 12 × 20

=> a = 240

Cost Price = Rs 240

Now,

To get 35 % Gain,

Selling price = Cost Price + 35% of Cost Price

SP = 240 + 35× 240 / 100

SP = 240 + 7 × 12

SP = 240 + 84

SP = Rs 324

To get 35 % Profit, he should sell the tie in Rs 324

HOPE IT HELPS:)

Similar questions