Math, asked by ismarika, 1 month ago

(b2–c2)cos2A+ (c2–a2)cos2B+ (a2–b2)cos2C= 0

Answers

Answered by manjulamaram1982
1

Answer:

This question is based on properties of triangle .

we know, \bold{\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}=P[{\text{constant}}]}

a

sinA

=

b

sinB

=

c

sinC

=P[constant]

so, sinA = aP , sinB = bP , sinC = cP

also we know,

\begin{gathered}\bold{cosA=\frac{b^2+c^2-a^2}{2bc}}\\\\\bold{cosB=\frac{c^2+a^2-b^2}{2ca}}\\\\\bold{cosC=\frac{a^2+b^2-c^2}{2ab}}\end{gathered}

cosA=

2bc

b

2

+c

2

−a

2

cosB=

please mark me as brainlist

2ca

c

2

+a

2

−b

2

cosC=

2ab

a

2

+b

2

−c

2

so, \begin{gathered}\bold{cotA=\frac{b^2+c^2-a^2}{2abcP}}\\\\\bold{cotB=\frac{c^2+a^2-b^2}{2abcP}}\\\\\bold{cotC=\frac{a^2+b^2-c^2}{2abcP}}\end{gathered}

cotA=

2abcP

b

2

+c

2

−a

2

cotB=

2abcP

c

2

+a

2

−b

2

cotC=

2abcP

a

2

+b

2

−c

2

Now, LHS = (b² - c²)cotA + (c² - a²)cotB + (a² - b²)cotC

Putting the values of cotA , cotB and cotC

= 1/2abcP[ (b² - c²)(b² + c² - a²) + (c² - a²)(c² + a² - b²) + (a² - b²)(a² + b² - c²)]

= 1/2abcP [ b⁴ - c⁴ -a²b² + a²c² + c⁴ - a⁴ -b²c² + b²a² + a⁴ - b⁴ - c²a² + c²b² ]

= 1/2abcP × 0 = RHS

Hence , proved

Answered by velpulaaneesh123
3

Answer:

0

Step-by-step explanation:

Factoring:  a2-b2  

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  a2  is the square of  a1  

Check :  b2  is the square of  b1  

Factorization is :       (a + b)  •  (a - b)  

Equation at the end of step 1 :

(b2)-(c2))•c)•o)•(s2))•a)+((c2)-(a2))•c)•o)•(s2))•b))+(((c•(b+a)•(a-b)•o)•s2)•c)  =0

STEP 2 :

Equation at the end of step 2

 (b2)-(c2))•c)•o)•(s2))•a)+((((((c2)-(a2))•c)•o)•(s2))•b))+((co•(b+a)•(a-b)•s2)•c)  = 0

STEP 3 :

Equation at the end of step 3

(b2)-(c2))•c)•o)•(s2))•a)+(c2)-(a2))•c)•o)•(s2))•b))+(cos2•(b+a)•(a-b)•c)  = 0

c1 multiplied by c1 = c(1 + 1) = c2

Equation at the end of step 4 :

(b2)-(c2))•c)•o)•(s2))•a)+((c2)-(a2))•c)•o)•(s2))•b))+c2os2•(b+a)•(a-b)  = 0

STEP 5 :

Trying to factor as a Difference of Squares:

5.1      Factoring:  c2-a2  

Check :  c2  is the square of  c1  

Check :  a2  is the square of  a1  

Factorization is :       (c + a)  •  (c - a)

Equation at the end of step 5 :

(b2)-(c2))•c)•o)•(s2))•a)+(((c•(c+a)•(c-a)•o)•s2)•b))+c2os2•(b+a)•(a-b)  = 0

STEP 6 :

Equation at the end of step 6

((b2)-(c2))•c)•o)•(s2))•a)+((co•(c+a)•(c-a)•s2)•b))+c2os2•(b+a)•(a-b)  = 0

STEP 7 :

Equation at the end of step 7

(b2)-(c2))•c)•o)•(s2))•a)+(cos2•(c+a)•(c-a)•b))+c2os2•(b+a)•(a-b)  = 0

STEP 8 :

Equation at the end of step 8

(b2)-(c2))•c)•o)•(s2))•a)+bcos2•(c+a)•(c-a))+c2os2•(b+a)•(a-b)  = 0

STEP 9 :

Trying to factor as a Difference of Squares:

9.1      Factoring:  b2-c2  

Check :  b2  is the square of  b1  

Check :  c2  is the square of  c1  

Factorization is :       (b + c)  •  (b - c)

Equation at the end of step  9 :

(c•(b+c)•(b-c)•o)•s2)•a)+bcos2•(c+a)•(c-a))+c2os2•(b+a)•(a-b)  = 0

STEP 10 :

Equation at the end of step 10

(co•(b+c)•(b-c)•s2)•a)+bcos2•(c+a)•(c-a))+c2os2•(b+a)•(a-b)  = 0

STEP 11 :

Equation at the end of step 11

((cos2•(b+c)•(b-c)•a)+bcos2•(c+a)•(c-a))+c2os2•(b+a)•(a-b)  = 0

STEP 12 :

Equation at the end of step 12

(cos2a•(b+c)•(b-c)+bcos2•(c+a)•(c-a))+c2os2•(b+a)•(a-b)  = 0

STEP  13 :

STEP  14 :

Pulling out like terms

Pull out like factors :

-b2c2os2 + b2cos2a + bc3os2 - bcos2a2 - c3os2a + c2os2a2  =  

-cos2 • (b2c - b2a - bc2 + ba2 + c2a - ca2)  

Trying to factor by pulling out :

  Factoring:  b2c - b2a - bc2 + ba2 + c2a - ca2  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  c2a - bc2  

Group 2:  b2c - b2a  

Group 3:  ba2 - ca2  

Pull out from each group separately :

Group 1:   (b - a) • (-c2)

Group 2:   (c - a) • (b2)

Group 3:   (b - c) • (a2)

Looking for common sub-expressions :

Group 1:   (b - a) • (-c2)

Group 3:   (b - c) • (a2)

Group 2:   (c - a) • (b2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Equation at the end of step 14 :

 -cos2 • (b2c - b2a - bc2 + ba2 + c2a - ca2)  = 0

STEP  15 :

Theory - Roots of a product

15.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation:

Solve   -cos2  = 0

Setting any of the variables to zero solves the equation:

 c  =  0

o  =  0

s  =  0

Similar questions