Math, asked by sana3179, 10 months ago

b2x/a+a2y/b=ab(a+b) and b2x+a2y=2a2b2 solve for x and y​

Answers

Answered by hetalbhatt2005
8

See the pictures

Solved by cross multiplication method

Answer is x= a² and y= -b²

Attachments:
Answered by swethassynergy
4

The value of x and y are a^{2} \ and \ b^{2} respectively.

Step-by-step explanation:

Given:

Equation \frac{b^{2} }{a} x+\frac{a^{2} }{b} y=ab(a+b).

Equation b^{2} x+a^{2} y=2a^{2} b^{2}.

To Find:

The value of x and y.

Solution:

As given- equation \frac{b^{2} }{a} x+\frac{a^{2} }{b} y=ab(a+b).

\frac{b^{2} }{a} x+\frac{a^{2} }{b} y=ab(a+b) ------------- equation no.01.

b^{3}x+a^{3} y=a^{2}b^{2}  (a+b)

b^{3}x+a^{3} y=a^{3}b^{2} + a^{2} b^{3}   ------------------- equation no.02.

As given-equation b^{2} x+a^{2} y=2a^{2} b^{2}.

b^{2} x+a^{2} y=2a^{2} b^{2}  -------------- equation no.03.

b^{2} x=2a^{2} b^{2} -a^{2} y

x=\frac{2a^{2} b^{2} -a^{2} y}{b^{2} } \\

Putting the value of x in equation no.03, we get.

b^{3} (\frac{2a^{2} b^{2} -a^{2} y}{b^{2} } )+a^{3} y=a^{3}b^{2} + a^{2} b^{3}

b( {2a^{2} b^{2} -a^{2} y)+a^{3} y=a^{3}b^{2} + a^{2} b^{3}

( {2a^{2} b^{3} -a^{2}b y)+a^{3} y=a^{3}b^{2} + a^{2} b^{3}

-a^{2}b y+a^{3} y=a^{3}b^{2} + a^{2} b^{3}- {2a^{2} b^{3}

a^{2} (a-b)y= a^{3}b^{2}  - a^{2} b^{3}

a^{2} (a-b)y=a^{2}b ^{2}   (a-b)

y=b^{2}

Putting the value of y in equation no.03 , we get.

b^{2} x+a^{2} (b^{2} )=2a^{2} b^{2}

b^{2} x=2a^{2} b^{2}-a^{2} b^{2}

b^{2} x=a^{2} b^{2}

x=a^{2}

Thus,the value of x and y are a^{2} \ and \ b^{2} respectively.

PROJECT CODE#SPJ2

Similar questions