Math, asked by Anonymous, 10 months ago

Baccha here :D xD

Question :

Solve :
\sf{\dfrac{x^{2002}\:+\:10x^{2001}}{10x^{2000}}} = 957.9

Answers

Answered by Siddharta7
20

Answer:

x = 93,-103

Step-by-step explanation:

\frac{x^{2002} + 10x^{2001}}{10x^{2000}} = 957.9

\Rightarrow \frac{x^{2001}(x + 10)}{10x^{2000}} = 957.9

\Rightarrow \frac{x^{2001 - 2000}(x + 10)}{10} = 957.9

\Rightarrow \frac{x(x + 10)}{10} = 957.9

\Rightarrow x(x + 10) = 9579

\Rightarrow x^2 + 10x - 9579 = 0

\Rightarrow x^2 + 103x - 93x - 9579 = 0

\Rightarrow x(x + 103) - 93(x + 103) = 0

\Rightarrow \boxed{x = 93, x = -103}

Hope it helps!

Answered by Anonymous
125

\huge\underline\mathfrak\red{Answer-}

\huge\boxed{x\:=\:93\:or\:-103}

\huge\underline\mathfrak\red{Explanation-}

\sf{\dfrac{x^{2002}\:+\:10x^{2001}}{10x^{2000}}} = 957.9

Multiply both sides by 10,

\leadsto \sf{\dfrac{x^{2002}\:+\:10x^{2001}}{10x^{2000}}} × 10 = 957.9 × 10

\leadsto \sf{\dfrac{x^{2002}\:+\:10x^{2001}}{x^{2000}}} = 9579

\leadsto \sf{\dfrac{x^{2002}}{x^{2000}}} + \sf{\dfrac{10x^{2001}}{x^{2000}}} = 9579

Now, by using law of exponents :

\sf{\dfrac{a^{m}}{a^{n}}} = \sf{a^{m-n}}

_______________________

\leadsto \sf{x^{2002-2000}} + \sf{10x^{2001-2000}} = 9579

\leadsto \sf{x^{2}\:+\:10x\:=\:9579}

\leadsto \sf{x^{2}\:+\:10x\:-\:9579\:=\:0}

Now, by splitting middle term,

\leadsto x² + 103x - 93x - 9579 = 0

\leadsto x( x + 103 ) - 93( x + 103 ) = 0

\leadsto ( x - 93 )( x + 103 ) = 0

\leadsto \huge\boxed{x\:=\:93\:or\:-103}

_______________________


StarrySoul: Nicee!♡
Similar questions