Math, asked by parvathasuren, 4 months ago

Balvinder father had a rhombus shaped plot with diagonals of 20 and 40 metres long . he sold the plot of same area. find the perimeter of new plot​

Answers

Answered by Anonymous
64

──

ƛƝƜЄƦ

 \small \red{Given}

   \small\red{{First \:  diagonal  \: of  \: the \:  rhombus \:  = 20 m}} \\

 \small \red{{ second \: of  \: the  \: rhombus = \:  40 m}} \\

  \small\red{{We \:  know  \: that ,}}

\small \red{Area  \: of \:  a \:  rhombus = \:  \frac{1}{2} \times d(1) \times d(2)}

  \small \red{{\tt \implies \:  \frac{1}{2} \times 20 \times 40 }}

\small \red{{ \tt \implies \:  \frac{1}{2} \times 800 }}

  \small  \red{{\tt \implies \frac{1}{2} \times 800 = 400 \: m^{2}  }}

 \small \red{{And \:  also \:  given  \: that ,}}

 \small \red{{Area \:  of  \:  the \:  rhombus \:  = Area \:  of  \: square}} \\

 \small \red{{We  \: know \:  that \:  , area \: of \:  a  \: square = (Side)^{2} }}\\

 \small \red{{Hence , \: 400 \: m^{2} = (side)^{2}  }}

 \small \red{{ \tt \implies \:(20)^{2} =(side)^{2} }}

  \small\red{{ \tt \implies \:side =  \sqrt{(20)^{2} }}}

 \small \red{{\tt\implies \:Side = 20 \: m}}

 \small \red{{We \:  know \:  that , \:  Perimeter  \: of  \: a  \: square = \:  4 \times Side}}

  \small \red{{\tt \implies \: 4 \times 20 \: m}}

 \small \red{{ \tt \implies \: 80 \: m}}

 \small \red{{Hence  \: , Perimeter  \: of  \: a  \: square  \: = 80 m }}\\


Anonymous: Splendid
Itzselfishking: Perfect ✌✌✌✌
Indianarmy08: You are right Abouslutely Perfect answer
Similar questions