Math, asked by Rashivashist7212, 1 year ago

Bar of a union b equals to a bar intersection b bar

Answers

Answered by Swarup1998
3

To prove: (A\cup B)^{c}=A^{c}\cap B^{c}

Proof:

Let us take x\in (A\cup B)^{c}

Then, x\in (A\cup B)^{c}

\iff x\in S\:but\:x\notin (A\cup B)

\iff (x\in S\:but\:x\notin A)\:and\:(x\in S\:but\:\notin B)

\iff (x\in A^{c})\:and\:(x\in B^{c})

\iff x\in (A^{c}\:and\:B^{c})

\iff x\in (A^{c}\cap B^{c})

Thus we have:

  • (A\cup B)^{c}\subseteq (A^{c}\cap B^{c})
  • (A^{c}\cap B^{c})\subseteq (A\cup B)^{c}

Combining them, we get

\quad (A\cup B)^{c}=A^{c}\cap B^{c}

Thus proved.

Another method:

  • \therefore (A\cup B)^{c}
  • =S-(A\cup B)
  • =S\cap (A\cup B)^{c}
  • =S\cap (B^{c}\cap A^{c})
  • =B^{c}\cap A^{c}
  • =A^{c}\cap B^{c}
  • Hence, proved.
Similar questions