Math, asked by babitalakwal7, 20 days ago

base diameter of a cylinder is 14cm and height is 20cm find its volume
2\pi

Answers

Answered by aftabahemad
2

In context to question asked,

we have to determine the volume of the cylinder.

As we know that,

Expression for volume of cylinder will be \Pi r^2 h

As per question,

Height of the cylinder = 20 cm

Diameter of cylinder = 14 cm

So, the value of radius of cylinder will be =\frac{14}{2} = 7\:cm

So, putting the above values in the formula for finding the volume of cylinder,

We will get,

Volume = \Pi r^2 h\\=>Volume = \frac{22}{7} \times 7 \times 7 \times 20\\=>Volume = 3080\:cm^3

Hence, volume of the cylinder will be 3080 cubic cm.

Answered by BrainlyResearcher
34

Question

base diameter of a cylinder is 14cm and height is 20cm find its volume

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Required Answer

  • {\sf{3080cm^2}}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Given

  • Diameter=14cm,
  • \sf{\therefore radius=\dfrac{14}{2}}=7cm
  • Height=20cm

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

To find

  • Volume of cylinder=?

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

Formula Using

\bigstar{\underline{\boxed{\red{\sf{Volume_{(cylinder)}=\pi r^2h}}}}}

Here

  • {\sf{\pi=\dfrac{22}{7}}}
  • r=radius
  • h=height

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

\qquad\qquad\qquad{\Large{\underline{\underline{\blue{\sf{Solution}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

{\large{\underline{\frak{Calculating\:volume\:of\:given\:cylinder}}}}

{\pink{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=\pi r^2h}}}}

{\pink{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=\dfrac{22}{7} \times 7\times 7\times 20}}}}

{\pink{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=\dfrac{22}{7} \times 7 \times 7\times 20}}}}

{\pink{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=22 \times 7\times 20}}}}

{\pink{\dashrightarrow}{\qquad{\sf{Volume_{(cylinder)}=154\times 20}}}}

{\blue{\rightsquigarrow}{\qquad{\underline{\red{\sf{Volume=3080cm^2}}}}}}

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

\begin{gathered} \\ {\underline{\rule{200pt}{3pt}}} \end{gathered}

~Therefore

  • Volume of given cylinder is {\bf{3080cm^2}}

\begin{gathered} \\ {\underline{\rule{200pt}{6pt}}} \end{gathered}  

Similar questions