Math, asked by anshitahorims, 3 months ago

Base of a parallelogram 17cm and it's area is 238cm2 then it's height is .....

Answers

Answered by Anonymous
12

Given -

  • Area of parallelogram = 238cm²

  • Base of parallelogram = 17cm

To find -

  • Height

Formula used -

  • Area of parallelogram

Solution -

In the question, we are provided with the area and the base of the parallelogram, and we need to find it's height, for that first we will consider height as h, and then we will find the height, by applying the formula of area of parallelogram, and then, we will divide area by base, from that we will obtain the height of the parallelogram. Let's do it!

So -

Let the height be termed as h

Base (b) = 17cm

Area (a) = 238cm²

 \sf \underline{Area \: of \: parallelogram} \:  = b \:  \times h

On substituting the values -

 \sf \: Area \:  =  \: b \:  \times h

 \sf 238 \: {cm}^{2}  = 17cm \:  \times h

 \sf \: h =  \cancel\dfrac{238 \: cm}{17 \: cm}

 \sf \: h = 14 \: cm

\therefore The height of parallelogram is 14cm

Verification -

 \sf \: Area = b \:  \times h

 \sf238 \:  {cm}^{2}  = 17cm \:  \times 14cm \:

 \sf238 {cm}^{2}  = 238 {cm}^{2}

_______________________________________________

Attachments:
Answered by Anonymous
16

Given:-

  • Base of a parallelogram is 17 cm.
  • Area of a parallelogram is 238 cm².

To find:-

  • Height of the parallelogram.

Solution:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \boxed{\tt{\bigstar{Concept{\bigstar}}}}

→ In this question, we are given the base of the paralegram and its area. We have to find out the height of the parallelogram.

Let,

  • the height of the parallelogram be h.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Area_{(parallelogram)} = base \times height}}}}}

\tt\longmapsto{238 = b \times h}

\tt\longmapsto{238 = 17 \times h}

\tt\longmapsto{h = \dfrac{238}{17}}

\tt\longmapsto{\boxed{\pink{h = 14\: cm}}}

⠀⠀

Hence,

  • the height of the parallelogram is 14 cm.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions