Math, asked by isunithasunitha9, 2 months ago

base of a pyramid in a square side of the square is 8cm height is 10cm slant height is 12cm find LSA ,TSA and volume​

Answers

Answered by 12thpáìn
170

Given

  • Side Of The Pyramid= 8cm.
  • Height= 10cm
  • Slant Height Is 12cm

To Find

  • LSA ,TSA and volume

Formula Used

  •  \sf{\gray{LSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2} Perimeter× Slant \:  Height}}
  •  \sf{\gray{TSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2} Perimeter× Slant \:  Height+Base}}
  • \gray{ \sf \: Volume= \dfrac{1}{3}Side²×Height}

Solution

  • Side Of The Pyramid= 8cm.
  • Perimeter of Pyramid=8×4=32cm
  • Base area= Side²=8²=64cm²
  • Height= 10cm
  • Slant Height Is 12cm

LSA of pyramid

\sf{LSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2} Perimeter× Slant \:  Height}

Putting the value of perimeter and Height in Formula We get,

\sf{\implies LSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2}  \times 32× 12}

\sf{\implies LSA \:  Of \:  Square \:  Pyramid =     32× 6}

\sf{\implies LSA \:  Of \:  Square \:  Pyramid =    192 {cm}^{2} }\\\\

Now TSA of Pyramid

\sf{TSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2} Perimeter× Slant \:  Height+Base}

Putting the value of perimeter , Height and Base in Formula We get,

\sf{\implies TSA \:  Of \:  Square \:  Pyramid =  \dfrac{1}{2} \times 32× 12+64}

\sf{\implies TSA \:  Of \:  Square \:  Pyramid =  ( 32×6)+64}

\sf{\implies TSA \:  Of \:  Square \:  Pyramid =  192+64}

\sf{\implies TSA \:  Of \:  Square \:  Pyramid =  256 {cm}^{2} }\\\\

Volume Of Pyramid

 \sf \: Volume= \dfrac{1}{3}Side²×Height

Putting the value of Side and Height in Formula

\implies\sf \: Volume= \dfrac{1}{3} \times 8²×10

\implies\sf \: Volume= \dfrac{1}{3} \times 64×10

\implies\sf \: Volume= 21.3×10

\implies\sf \: Volume= 213 {cm}^{3}

  • LSA of pyramid= 192cm²
  • TSA of Pyramid=256cm²
  • Volume Of Cylinder=213cm²
Similar questions