Math, asked by shreshtha3448, 7 months ago

Base of a right pyramid is a square, length of diagonal of the base is 24V2 m. If the volume of the pyramid is 1728 cu. m, its height is :


Don't Spam!
Give full explanation.​

Answers

Answered by SweetCharm
8

\underline{\underline{\sf{\clubsuit \:\:Question:}}}

Base of a right pyramid is a square, length of diagonal of the base is 24√2 m. If the volume of the  pyramid is 1728 cu. m, it's height is

\underline{\underline{\sf{\clubsuit \:\:Given:}}}

Base of a right pyramid is a square

Length of diagonal of the base = 24√2 m

Volume of the  pyramid = 1728 cu. m

\underline{\underline{\sf{\clubsuit \:\:To\:Find:}}}

Height of pyramid

\underline{\underline{\sf{\clubsuit \:\:Answer:}}}

Height of the square pyramid is 9m

\underline{\underline{\sf{\clubsuit \:\:Calculations}}}

\boxed{\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:Area\:of\:Base\:\times\:Height}}

Area of the base = 1/2 × (Diagnol)²

Area of the base = 1/2 × (24√2 m)²

Area of the base = 1/2 × 24√2 m × 24√2 m

Area of the base = 1/2 × 1152 m²

Area of the base = 576 m²

Keeping the value in Volume of pyramid formula :

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:Area\:of\:Base\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{1}{3}\:\times\:576\:m^2\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\dfrac{576}{3}\:m^2\:\times\:Height}

\sf{Volume\:\:of\;\:Pyramid\:\:=\:\:\ 192\:m^2\:\times\:Height}

\sf{1728\:m^3\:\:=\:\:\ 192\:m^2\:\times\:Height}

\sf{\dfrac{1728\:m^3}{{192\:m^2}}\:\:=\:\:\ \dfrac{192\:m^2\:\times\:Height}{192\:m^2}}

\sf{9m\:\:=\:\:Height}

\sf\green{∴ Height~ of~ the ~square ~pyramid~ is~ 9m}

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Answered by anilahirwar0002
0

Step-by-step explanation:

बच्चा- स्कूल में गधा लेकर आया!

.

टीचर- इसे क्यों लाए हो?

.

बच्चा- मैम आप ही तो कहती हैं कि मैंने बड़े से बड़े गधे को

इंसान बनाया है, मैंने सोचा इस बेचारे का भी भला हो जाएगा!

Attachments:
Similar questions