Math, asked by shalikrao1972, 5 months ago

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6 find A1 : A2.​

Answers

Answered by sonisiddharth751
4

A_1 : A_2 = 3:4

Step-by-step explanation:

Given :-

  • Base of first triangle = 9 unit .
  • Base of another triangle = 10 unit .
  • Height of first triangle = 5 unit .
  • Height of another triangle = 6 unit .

To find :-

  • The ratio of areas of the first triangle and second triangle .

Formula used :-

  • Area of triangle = ½ base × height .

Solution :-

 \sf\dfrac{A_1}{A_2 } =   \dfrac{ \dfrac{1}{2}  \times base_  {{1}^{st} triangle}\times  height_ {{1}^{st}triangle} }{ \dfrac{1}{2}  \times base_  {{2}^{nd} triangle}\times  height_ {{2}^{nd}triangle}}  \\  \\  \sf \: \dfrac{A_1}{A_2 } =   \dfrac{ \dfrac{1}{2}  \times 9 \times 5}{ \dfrac{1}{2}  \times 10 \times 6}  \\  \\ \sf \: \dfrac{A_1}{A_2 } =   \dfrac{ \dfrac{45}{2} }{30}  \\  \\ \sf \: \dfrac{A_1}{A_2 } = \dfrac{45}{2 \times 30}  \\  \\ \sf \: \dfrac{A_1}{A_2 } = \dfrac{45}{60}  \\  \\ \sf \: \dfrac{A_1}{A_2 } = \dfrac{3}{4}  \\

Hence, A_1 : A_2 = 3 : 4

Similar questions