Math, asked by altafshaikh2105, 1 day ago

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.​

Answers

Answered by Anonymous
63

Given :

  • Base of 1st Triangle = 9
  • Height of Triangle = 5
  • Base of 2nd Triangle = 10
  • Height of Triangle = 6

 \\ \\

To Find :

  • Find the Ratio of Areas

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

 {\qquad \; {\green{\bigstar \; \; {\purple{\underbrace{\underline{\red{\sf{ Area{\small_{(Triangle)}} = \dfrac{1}{2} \times Base \times Height }}}}}}}}}

 \\ \\

 \dag Calculating the Ratio :

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ Area_1 }{ Area_2 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ \dfrac{1}{2} \times Base \times Height }{ \dfrac{1}{2} \times Base \times Height } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ \dfrac{1}{2} \times 9 \times 5 }{ \dfrac{1}{2} \times 10 \times 6 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ \dfrac{1}{2} \times 45 }{ \dfrac{1}{2} \times 60 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ \dfrac{45}{2} }{ \dfrac{60}{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ \cancel\dfrac{45}{2} }{ \cancel\dfrac{60}{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ 22.5 }{ 30 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \cancel\dfrac{ 22.5 }{ 30 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; \sf { Ratio = \dfrac{ 3 }{ 4 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad :\longmapsto \; \; {\underline{\boxed{\pmb{\sf { Ratio = 3:4 }}}}} \; {\purple{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; The Ratio of the Areas is 3:4 .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by AnanyaBaalveer
7

Given:-

  • Two triangles of dimensions
  • Base=9 and 10 respectively.
  • Height= 5 and 6 respectively.

To find:-

  • Ratio of their areas

Solution:-

★We can calculate the areas of the figure and the divide the numbers till the lowest form to find it's ratio of the areas. The formula for calculating area of a triangle is given below★

\large \blue{\underline{  \green{\boxed{\bf{ \red{ \:  \:  \:  \:  \:  \:  \implies \frac{1}{2} \times b \times h  \:  \:  \:  \:  \:  \: }}}}}}

»Where,

  • b=base of the triangle.
  • h=height of the triangle.

Now, on substituting values we get:-

Calculating for 1st triangle:-

\large\underline{\sf{  \implies\frac{1}{2}  \times 9 \times 5}}

\large\underline{\sf{ \implies9 \times 2.5}}

\large \green{\underline{ \boxed{\sf{  \red{  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   \:  \implies22.5 \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:}}}}}

Calculating for 2nd triangle:-

\large\underline{\sf{ \implies \frac{1}{2} \times 10 \times 6 }}

\large\underline{\sf{ \implies5 \times 6}}

\large \blue{\underline{  \green{ \boxed{{\sf{ \red{ \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \: \implies30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}}}}}

Now we will simply them:-

\large\underline{\sf{  \implies\frac{22.5}{30} }}

\large \blue{\underline{ \green{ \boxed{\sf{ \red{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies1.5 \ratio30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}}}}}

______________________________________

Basic concept!!

  • A triangle is a 2-D figure.
  • It is of 3 types.
  1. Equilateral triangle
  2. Isosceles triangle
  3. Scalene triangle
  • There are 3 different formulas to calculate.
  1. For equilateral triangle:- 3/4. ×s²
  2. For isosceles triangle:- 1/2 ×b×h
  3. For scalene triangle:- s(s-a)(s-b)(s-c)
  • In equilateral triangle all sides and angles are equal.
  • In isosceles triangle two sides and two angles are equal.
  • In scalene triangle all sides and angles are uneven and different.
Similar questions