Math, asked by RishuBhai0687, 10 months ago

Base of right angled triangle is 5m and angle between base and hypotenuse is 60°. find the height of triangle​

Answers

Answered by Anonymous
90

\bf{\underline{\underline{\bigstar\bigstar\: Solution : }}}\\

\:\:

\footnotesize{Cos\theta =  \dfrac{Base}{hypotenuse}}\\

\footnotesize{\implies Cos{60}^{\circ} =  \dfrac{5m}{Hypotenuse}}\\

\footnotesize{\implies \dfrac{1}{2} =  \dfrac{5m}{Hypotenuse}}\\

\footnotesize{\implies Hypotenuse =  \dfrac{5m}{\dfrac{1}{2}}}\\

\footnotesize{\implies Hypotenuse =  \dfrac{5m \times 2}{1}}\\

\footnotesize{\implies Hypotenuse =  \dfrac{10m}{1}}\\

\footnotesize{\implies Hypotenuse =  10m}\\

\:\:

\rule{200}3

\:\:

\underline{\bold{\bigstar\:Using\: Pythagoras\: theorem}}\\

\:\:

\footnotesize{\implies {Hypotenuse}^{2} =  {Base}^{2} + {Height}^{2}}\\

\footnotesize{\implies {Hypotenuse}^{2} -  {Base}^{2} = {Height}^{2}}\\

\footnotesize{\implies {(10m)}^{2} -  {(5m)}^{2} = {Height}^{2}}\\

\footnotesize{\implies {100m}^{2} -  {25m}^{2} = {Height}^{2}}\\

\footnotesize{\implies  {75m}^{2} = {Height}^{2}}\\

\footnotesize{\implies  \sqrt{{75m}^{2}} = Height}\\

\footnotesize{\implies  5\sqrt{3}\:m} = Height}\\

\footnotesize{\implies   8.66m = Height}\\

Attachments:
Answered by Anonymous
30

 \large\bf\underline{Given:-}

  • Base of triangle = 5m
  • Theta = 60°

 \large\bf\underline {To \: find:-}

  • height

 \huge\bf\underline{Solution:-}

we know that,

  • cot ∅ = base /perpendicular
  • Base = 5m
  • ∅ = 60°

  • cot 60° = 1/√3

»»Cot 60° = 5m/height

»» 1/√3 = 5/height

»» height = 5√3

hence

  • height of triangle is 5√3.

\rule{200}3

\bigstar\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}cot \theta&&\sqrt{3}&1 &$\dfrac{1}{\sqrt{3}}$& 0\end{tabular}}

Attachments:
Similar questions