Math, asked by gatiyalap3088, 9 months ago

Base perimeter of a square pyramid is 32cm and it's height is 15cm . What is it lateral surface area?

Answers

Answered by Brâiñlynêha
56

\huge\mathbb{\underline{SOLUTION:-}}

\sf\underline{\purple{\:\:\:\: Given\:\:\:\:}}

\sf\bullet Base\: perimeter\:of\:square\:pyramid=32cm\\ \\ \sf\bullet Height\:of\: pyramid=15cm

  • Now we have to find the Lateral surface area of pyramid

\boxed{\sf{Perimeter\:of\:square\:pyramid= 4\times side}}

\boxed{\sf{L.S.A\:of\:square\:pyramid= 2bh}}

Now first the side of pyramid

\sf:\implies 4\times side=32\\ \\ \sf:\implies side=\cancel{\dfrac{32}{4}}\\ \\ \sf:\implies side= 8cm

  • Base of pyramid is 8cm
  • Now L.S.A

\sf:\implies L.S.A=2\times 8\times 15\\ \\ \sf:\implies L.S.A= 16\times 15\\ \\ \sf:\implies L.S.A= 240cm{}^{2}

\boxed{\sf{L.S.A\:of\:pyramid=240cm{}^{2}}}


Anonymous: Great
kaushik05: perfect
SnowySecret72: nice
Answered by EliteSoul
194

Answer:

{\sf\red{\underline{\sf\pink{\boxed{\sf\green{Lateral\: surface \: area = 240\: {cm}^{2}}}}}}}

Step-by-step explanation:

\frak\green{Given:-}\begin{cases}\sf\red{Perimeter \: of \: square \: pyramid = 32 \: cm}\\\sf\orange{Height = 15\: cm }\\\sf\pink{LSA \: of \: pyramid = ?}\end{cases}

Now we can find LSA in 2 methods.

Method 1:-

First we have to find side of pyramid meaning the base of pyramid.

We know that,

\boxed{\boxed{\sf\pink{Perimeter \: of \: square = 4 \times Side}}}

\hookrightarrow\sf 32 = 4 \times base \\\\\hookrightarrow\sf Base =\cancel{\dfrac{32}{4}} \: cm \\\\\hookrightarrow{\boxed{\sf\red{Base = 8 \: cm}}}

Now we know that,

\boxed{\boxed{\sf\orange{LSA \: of \: square\: pyramid = 2bh}}}

\hookrightarrow\sf LSA = 2 \times 8 \times 15 \\\\\hookrightarrow\large{\boxed{\sf\pink{LSA = 240 \: {cm}^{2} }}}

\therefore\bold{LSA \: of \: square \: pyramid = 240 \: {cm}^{2} }

\rule{200}{1}

Method 2:-

In this method we can easily find the LSA of square pyramid.

Given:-

  • Perimeter of square pyramid=32 cm
  • Height = 15 cm

To find:-

  • LSA of square pyramid.

We know that,

\boxed{\boxed{\sf\green{LSA = \dfrac{Base \: perimeter \times Slant \: height}{2} }}}

\sf \: \: *Substituting\: values :-

\hookrightarrow\sf LSA = \dfrac{32 \times 15}{2} \\\\\hookrightarrow\sf LSA =\cancel{ \dfrac{480}{2}} \\\\\hookrightarrow\large{\sf\green{\boxed{\sf\gray{LSA = 240 \: {cm}^{2} }}}}

{\underline{\boxed{\therefore{\sf\blue{LSA \: of \: square \: pyramid = 240 \: {cm}^{2} }}}}}


BrainlyConqueror0901: coloufull and well explained answer keep it up : )
Anonymous: Awesome
Anonymous: Awesome
kaushik05: nice
SnowySecret72: Great:)
Similar questions