Math, asked by welljpgupta, 3 months ago

Based on the proportions given in the image, a rectangular gate with a triangular vent of equal sides needs to be constructed. If the area of the vent needs to be 4√3 m², what will be boundary length (in m) of the entire structure?​

Attachments:

Answers

Answered by MяMαgıcıαη
137

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\textsf{\textbf{\purple{Question\::}}}}

Based on the proportions given in the image, a rectangular gate with a triangular vent of equal sides needs to be constructed. If the area of the vent needs to be 4√3 m² , what will be boundary length (in m) of the entire structure?

\underline{\textsf{\textbf{ \purple{Given\::}}}}

  • Side of triangular vent = a m
  • Area of triangular vent = 43 m²
  • Length of rectangular gate = 7a m
  • Breadth of gate = side of vent = a m

\underline{\textsf{\textbf{ \purple{To\:find\::}}}}

  • Length of boundary (in m) of the entire structure?

\underline{\textsf{\textbf{ \purple{Solution\::}}}}

Using formula of area of equilateral triangle :

\qquad:\implies\:\bf{ Area_{(Equilateral\:triangle)}\:=\: \red{\dfrac{\sqrt{3}}{4}(Side)^2}}

Values that we have :

  • Area(Equilateral triangle) = 43
  • Side = a m

Putting all values in the formula :

\qquad:\implies\:\sf 4\:\times\:\sqrt{3} = \dfrac{\sqrt{3}}{4}\:\times\:(a)^2

\qquad:\implies\:\sf 4\:\times\:\sqrt{3}\:\times\:\dfrac{4}{\sqrt{3}} = a^2

\qquad:\implies\:\sf 4\:\times\:\cancel{\sqrt{3}}\:\times\:\dfrac{4}{\cancel{\sqrt{3}}} = a^2

\qquad:\implies\:\sf 4 = a^2

\qquad:\implies\:\sf \sqrt{4} = a

\qquad:\implies\:\sf \sqrt{\underline{2\:\times\:2}} = a

\qquad:\implies\:\bf {a = \red{4\:m}}

Therefore,

~Side(vent) = breadth(gate) = a m = 4 m

~Length(gate) = 7a m = (7 × 4) m = 28 m

Finding the length of boundary of entire structure :

➠ Length(boundary) = Perimeter(vent) + ㅤPerimeter(gate)

➠ Length(boundary) = (3×side) + [2(l+b)]

➠ Length(boundary) = (3×4) + [2(28+4)]

➠ Length(boundary) = 12 + 2(32)

➠ Length(boundary) = 12 + 64

➠ Length(boundary) = 76 m

This is the required answer.

\small\underline{\boxed{\sf{Length\:of\:boundary\:of\:entire\:structure\:=\:\rm\purple{76\:m}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions