Math, asked by 786tahssumbee, 3 months ago

BASIC GEOMET
66. Which of the following can not be the lengths
of the three sides of a triangle
(a) 6 cm, 7 cm, 12 cm
(b) 5 cm, 6 cm, 11 cm
(c) 4 cm, 5 cm, 7 cm
(d) None of these​

Answers

Answered by aaryushi01
0

Answer:

b. 5 cm, 6 cm, 11 cm

Step-by-step explanation:

sum of two sides of a triangle is greater then the third one

So,

6 + 7 = 13 > 12

5 + 6 = 11 = 11

4 + 5 = 9 > 7

Answered by SachinGupta01
3

Answer :

5 cm, 6 cm, 11 cm cannot be the lengths of the three sides of a triangle.

Formula used to solve this problem :

 \boxed{ \sf \: Sum  \: of \:  2 \:  sides  \: of \triangle \:  \boxed  {>} \:  than \:the \:   third \:   side.}

So, Let's find our answer now :

 \sf \: (a) \:  6  \: cm,  \: 7  \: cm, \:  12  \: cm

 \sf \longrightarrow \: 6  \: +  \: 7  \: = \: 13 \:  \boxed {>}  \: 12

 \sf \longrightarrow \:  13 \:  is \:  more  \: than \:  12

 \sf \: So, \:  this  \: can \:  be  \: the  \: lengths \:  of  \: the \: three \:sides  \: of \:  a  \: \triangle.

_____________________________

 \sf \: (b) \:  5  \: cm, \:  6  \: cm, \:  11 \:  cm

 \sf \longrightarrow \: 5  \: +  \: 6 \: = \: 11 \:  \boxed { = }  \: 11

 \sf \longrightarrow \: 11  \: is  \: not \:  more \:  than  \: 11.

 \sf \: So, \:  this  \: cannot \:  be  \: the  \: lengths \:  of  \: the \: three \:sides  \: of \:  a  \: \triangle.

_____________________________

 \sf \: (c) \:  4  \: cm,  \: 5  \: cm,  \: 7  \: cm

 \sf \longrightarrow \: 4 \: +  \: 5 \: = \: 9 \:  \boxed {  > }  \:7

 \sf \longrightarrow \:  9 \:  is \:  more  \: than \:  7

 \sf \: So, \:  this  \: can \:  be  \: the  \: lengths \:  of  \: the \: three \:sides  \: of \:  a  \: \triangle.

_____________________________

 \sf \longrightarrow \:  Hence \:  B \:  option \:  is  \: correct.

Similar questions