Math, asked by lizel, 10 months ago

BE and CF are two equal altitudes of a triangle ABC . Using RHS congruence rule , prove that the triangle ABC is isosceles .​

Answers

Answered by pandaXop
82

Step-by-step explanation:

Given:

  • BE and CF are two altitudes of triangle ABC.
  • BE is also equal to CF.

To Prove:

  • ∆ABC is an isosceles triangle i.e AB = AC

Proof: In ∆BCF and ∆CBE , we have

  • ∠BFC = ∠CEB = 90°

  • BC = CB ( Common in both )

  • FC = EB ( Given , altitudes are equal )

So, ∆BCF ≅ ∆CBE , by RHS congruence rule.

FBC = ECB ( By C.P.CT )

As we know that if two angles are equal then the sides opposite to that angles are also equal.

=> we got AB = AC

Hence, ∆ABC is an isosceles triangle.

Attachments:

Brâiñlynêha: Great!
Answered by Anonymous
203

\sf{\underline{\underline{Given:}}}

\sf{Given,\:BE\:is\:a\:altitude,\:So,}

\sf\red{\angle AEB = \angle CEB = 90\degree \: \: \: \: \: ......(1)}

\sf{\underline{\underline{Also:}}}

\sf{CF \:is\:altitude,So,}

\sf\green{\angle AFC = \angle BFC = 90\degree\: \: \: \: \: .....(2)}

\sf\orange{Also,\: BE = CF \: \: \: \: \: ......(3)}

\sf\large{\underline{\underline{To\:Prove:}}}

\sf{Triangle\:ABC\:is\:Isosceles}

\sf\large{\underline{\underline{Proof:}}}

\sf{\longrightarrow In\:Triangle\:BCF \:and\:Triangle\:CBE}

\sf{\red{ \angle BCF = \angle CEB = 90\degree \: \: \: ...(Both\:90\degree)}}

\sf{\purple{BC = CB \: \: \: .....(Common)}}

\sf{\green{FC = EB \: \: \: ...(From (3))}}

\sf\orange{Triangle\:BCF\:is\:congruence\:to\: Triangle\:CBE \: \: \: ....(RHS\:rule\:of\:Congruency)}

\sf\large{\underline{\underline{Therefore:}}}

\sf\red{\angle FBC = \angle ECB \: \: \: \: \: .....(CPCT)}

\sf\green{So,\: \angle ABC = \angle ACB}

\sf\purple{ AB = AC \: \: \: ...(Sides\:opposite\:to\:equal\:angles\:is\:equal)}

\sf\large{\underline{\underline{Hence:}}}

\bold{\fbox{\color{red}{Triangle\:ABC\:is\:an\:Isosceles\:Triangle.}}}

Attachments:

Brâiñlynêha: Nice
Similar questions