Math, asked by malempatianitha29, 1 month ago

BE HAPPY ,NO SPAM CLEAR​

Attachments:

Answers

Answered by hemanthvadapalli123
2

1) Question:-

 log_{ \sqrt{5} }125

Solution:-

Let

 log_{ \sqrt{5} }125 = x

So,

( \sqrt{5} )^{x}  = 125

125 =  {5}^{3}  = ( { \sqrt{5} )}^{6}

( \sqrt{ {5}}) ^{x}  = ( { \sqrt{5} })^{6}

Bases are equal. So, powers also equal

x = 6

 log_{ \sqrt{5} }125 = 6

2) Question:-

 log_{(0.25)}32

Solution:-

Let

 log_{ (\frac{1}{4}) }32 = x

So,

 {( \frac{1}{4}) }^{x}  = 32

 \frac{1}{4}  =  \frac{1}{ {2}^{2} } =  {2}^{ - 2}

So,

 {2}^{ - 2x}  = 32

32 = 2 \times 2 \times 2 \times 2 \times 2 =  {2}^{5}

 {2}^{ - 2x}  =  {2}^{5}

Bases are equal. So, powers also equal

 - 2x = 5

x =    - \frac{ 5}{2}

 log_{(0.25)}32 =  -  \frac{5}{2}

3) Question:-

 log_{( \frac{1}{8} )}\sqrt{32}

Solution:-

Let

 log_{ \frac{1}{8} } \sqrt{32}    = x

( { \frac{1}{8}) }^{x}  =  \sqrt{32}

 \frac{1}{8}  =  \frac{1}{ {2}^{3} }  =  {2}^{ - 3}

 \sqrt{32}  =  {32}^{ - 2}  =  {2}^{(5 \times  - 2)}

 {2}^{ - 3x}  =  {2}^{ - 10}

Bases are equal. So, powers also equal

 - 3x =  - 10

x =  \frac{ - 10}{ - 3}  =  \frac{10}{3}

 log_{ \frac{1}{8} } \sqrt{32}  =  \frac{10}{3}

Hope this is helpful

Answered by harshini196
1

hope helpful to you please make me bralinist votes

Attachments:
Similar questions