Math, asked by Dinosaurs1842, 1 month ago

Bello Brainliest users!
Math : Please be detailed
Question 1 :
If x =
 \sf  \dfrac{1}{3 -  \sqrt{5} }
Find :
 \sf \sqrt{x}  +  \dfrac{1}{ \sqrt{x} }
Question 2 :
Let a = 3 - √n, where n is a natural number. If 'p' is the least possible value of 'a', then find the value of :
 \sf \sqrt{p}  +  \dfrac{1}{ \sqrt{p} }

Answers

Answered by BrainlyPhantom
27

Question 1:

It is given that:

\sf{\implies\:x=\dfrac{1}{3-\sqrt{5}}}

And we are asked to find:

\sf{\implies\:\sqrt{x}+\dfrac{1}{\sqrt{x}}}

Solving:

✳ First we have to rationalize the given value of the variable x.

\sf{\longrightarrow\:\dfrac{1}{3-\sqrt{5}}\times\dfrac{3+\sqrt{5}}{3+\sqrt{5}}}

✳ The result will be:

\sf{\longrightarrow\:\dfrac{3+\sqrt{5}}{9-5}}

\sf{\longrightarrow\:\dfrac{3+\sqrt{5}}{4}}

This is the simplified value of variable 'x'.

✳ This means that:

\sf{\implies\:\dfrac{1}{x}=3-\sqrt{5}}

Now, lets consider the following statement:

\sf{\implies\:\bigg(\sqrt{x}}+\dfrac{1}{\sqrt{x}}\bigg)^2=x+\dfrac{1}{x}+2

✳ Here let's consider the RHS of the equation and substitute values based on it:

\sf{\longrightarrow\:x+\dfrac{1}{x}+2}

\sf{\longrightarrow\:\dfrac{3+\sqrt{5}}{4}+3-\sqrt{5}+2}

✳ Now moving the complete expression under the denominator 4:

\sf{\longrightarrow\:\dfrac{3+\sqrt{5}+12-4\sqrt{5}+8}{4}}

✳ Simplifying the expression further, we get:

\sf{\longrightarrow\:\dfrac{23-3\sqrt{5}}{4}}

✳ Multiplying both the numerator and denominator with 2 (for further simplifications):

\sf{\longrightarrow\:\dfrac{46-6\sqrt{5}}{8}}

✳ Expanding the numerator part of the fraction (for further simplifications):

\sf{\longrightarrow\:\dfrac{45+1-6\sqrt{5}}{8}}

Now the numerator is the format:

➡ (a - b)² = a² - 2ab + b²

✳ Therefore, converting the numerator part into the given identity format:

\sf{\longrightarrow\:\bigg(\dfrac{3\sqrt5-1}{\sqrt{8}}\bigg)^2}

✳ The denominator part can be written as:

\sf{\longrightarrow\:\bigg(\dfrac{3\sqrt5-1}{2\sqrt{2}}\bigg)^2}

✳ The given expression is in the format:

\sf{\implies\:\bigg(\sqrt{x}}+\dfrac{1}{\sqrt{x}}\bigg)^2

✳ This means that:

\sf{\bigg(\sqrt{x}}+\dfrac{1}{\sqrt{x}}\bigg)^2=\bigg(\dfrac{3\sqrt5-1}{2\sqrt{2}}\bigg)^2

Henceforth:

\bf{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=\dfrac{3\sqrt5-1}{2\sqrt{2}}

Question 2:

It is given that:

➡ a = 3 - √n

✳ If we give the value of n as 9, then the value of a will become 0 which will be a whole number. [√9 is 3 and 3 - 3 = 0]

Therefore, the value of "n" must be taken as 8 [ n = 8 ].

This means that the least possible value "p" for a is:

\sf{\longrightarrow\:p=3-\sqrt{8}}

So,

\sf{\longrightarrow\:\sqrt{p}=\sqrt{3-\sqrt8}}

\sf{=\sqrt{3-2\sqrt2}}

\sf{=\sqrt{\sqrt2-1}}

\sf{=\sqrt{2}-1}

✳ Now,

\sf{\longrightarrow\:\dfrac{1}{\sqrt{p}}=\dfrac{1}{\sqrt2-1}}

✳ Rationalizing the denominator:

\sf{=\dfrac{1}{\sqrt2-1}\times\dfrac{\sqrt2+1}{\sqrt2+1}}

\sf{=\sqrt{2}+1}

So,

\bf{\star\:\sqrt{p}=\sqrt{2}-1}

\bf{\star\:\dfrac{1}{\sqrt{p}}=\sqrt{2}+1}

✳ Now, we have to find:

\sf{\longrightarrow\:\sqrt{p}+\dfrac{1}{\sqrt{p}}}

✳ Substituting the values we found into the expression:

\sf{\longrightarrow\:\sqrt2-1+\sqrt2+1}

\bf{=2\sqrt{2}}

Henceforth:

\bf{\sqrt{p}+\dfrac{1}{\sqrt{p}}=2\sqrt2}

Similar questions