Math, asked by starmeghna522, 3 months ago

best and explained answer would be marked as brilliant.
@starmeghna522

Attachments:

Answers

Answered by Anonymous
16

We have asked to prove that,

\sf \dfrac{1}{1+\sqrt{2}} + \dfrac{1}{\sqrt{2}+\sqrt{3}} + \dfrac{1}{\sqrt{3}+\sqrt{4}} + \dfrac{1}{\sqrt{4}+\sqrt{5}} + \dfrac{1}{\sqrt{5}+\sqrt{6}} + \dfrac{1}{\sqrt{6}+\sqrt{7}} + \dfrac{1}{\sqrt{7}+\sqrt{8}} + \dfrac{1}{\sqrt{8}+\sqrt{9}} = 2

So to solve this question we have to rationalize the denominator of each expression. So let's rationalize!

Expression first!

:\implies \sf \dfrac{1}{1+\sqrt{2}} \\ \\ :\implies \sf \dfrac{1}{1+\sqrt{2}} \times \dfrac{1-\sqrt{2}}{1-\sqrt{2}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (1)^{2} - (\sqrt{2})^{2} \\ \\ :\implies \sf 1 - 2 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{-\sqrt{2}}{-1} \\ \\ :\implies -(1-\sqrt{2}) \\ \\ :\implies \sf \sqrt{2} - 1

Expression 2nd

:\implies \sf \dfrac{1}{\sqrt{2}+\sqrt{3}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{2}+\sqrt{3}} \times \dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{2})^{2} - (\sqrt{3})^{2} \\ \\ :\implies \sf 2 - 3 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{\sqrt{2}-\sqrt{3}}{-1} \\ \\ :\implies \sf \sqrt{3} - \sqrt{2}

Expression 3rd

:\implies \sf \dfrac{1}{\sqrt{3}+\sqrt{4}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{3}+\sqrt{4}} \times \dfrac{\sqrt{3}-\sqrt{4}}{\sqrt{3}-\sqrt{4}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{3})^{2} - (\sqrt{4})^{2} \\ \\ :\implies \sf 3 - 4 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf  \dfrac{\sqrt{3}-\sqrt{4}}{-1} \\ \\ :\implies \sf \sqrt{4} - \sqrt{3}

Expression fourth

:\implies \sf \dfrac{1}{\sqrt{4}+\sqrt{5}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{4}+\sqrt{5}} \times \dfrac{\sqrt{4}-\sqrt{5}}{\sqrt{4}-\sqrt{5}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{4})^{2} - (\sqrt{5})^{2} \\ \\ :\implies \sf 4 - 5 \\ \\ :\implies \sf 1 \\ \\ :\implies \sf \dfrac{\sqrt{4}-\sqrt{5}}{-1} \\ \\ :\implies \sf \sqrt{5} - \sqrt{4}

Expression fifth!

:\implies \sf \dfrac{1}{\sqrt{5}+\sqrt{6}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{5}+\sqrt{6}} \times \dfrac{\sqrt{5}-\sqrt{6}}{\sqrt{5}-\sqrt{6}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{5})^{2} - (\sqrt{6})^{2} \\ \\ :\implies \sf 5 - 6 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{\sqrt{5}-\sqrt{6}}{-1} \\ \\ :\implies \sf \sqrt{6} - \sqrt{5}

Expression sixth!

:\implies \sf \dfrac{1}{\sqrt{6}+\sqrt{7}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{6}+\sqrt{7}} \times \dfrac{\sqrt{6}-\sqrt{7}}{\sqrt{6}-\sqrt{7}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{6})^{2} - (\sqrt{7})^{2} \\ \\ :\implies \sf 6 - 7 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{\sqrt{6}-\sqrt{7}}{-1} \\ \\ :\implies \sf \sqrt{7} - \sqrt{6}

Expression seventh!

:\implies \sf \dfrac{1}{\sqrt{7}+\sqrt{8}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{7}+\sqrt{8}} \times \dfrac{\sqrt{7}-\sqrt{8}}{\sqrt{7}-\sqrt{8}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{7})^{2} - (\sqrt{8})^{2} \\ \\ :\implies \sf 7 - 8 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{\sqrt{7}-\sqrt{8}}{-1} \\ \\ :\implies \sf \sqrt{8} - \sqrt{7}

Expression eighth!

:\implies \sf \dfrac{1}{\sqrt{8}+\sqrt{9}} \\ \\ :\implies \sf \dfrac{1}{\sqrt{8}+\sqrt{9}} \times \dfrac{\sqrt{8}-\sqrt{9}}{\sqrt{8}-\sqrt{9}} \\ \\ :\implies \sf (a+b)(a-b) = a^2 - b^2 \\ \\ :\implies \sf (\sqrt{8})^{2} - (\sqrt{9})^{2} \\ \\ :\implies \sf 8 - 9 \\ \\ :\implies \sf -1 \\ \\ :\implies \sf \dfrac{\sqrt{8}-\sqrt{9}}{-1} \\ \\ :\implies \sf \sqrt{9} - \sqrt{8}

Now putting the final result of each expression in the whole given expression! Let's see how to do!

:\implies \sf (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (\sqrt{4} - \sqrt{3}) + (\sqrt{5} - \sqrt{4}) + (\sqrt{6} - \sqrt{5}) + (\sqrt{7} - \sqrt{6}) + (\sqrt{8} - \sqrt{7}) + (\sqrt{9} - \sqrt{8})

Now cancelling the terms.

(Don't forget like terms that have opposite signs can cancel each other like √2 cancel -√2 or etc etc)

After cancelling we are lest with,

:\implies \sf -1 + \sqrt{9} \\ \\ :\implies \sf -1 + 3 \\ \\ :\implies \sf +2 \\ \\ \sf LHS \: = RHS \\ \\ \sf Henceforth, \: proved

________________

  • Dear app users if you are getting problem to see this answer from app then you can go to web for seeing this answer or you can see from attachment too.

Attachments:
Similar questions