Math, asked by kamalhajare543, 1 month ago

Best Brainly user

 \sf \: \lim _{x \longrightarrow - \infty }( \sin( \frac{1}{ \theta} ) )
Expain in Step by step.

Answers

Answered by mathdude500
5

Appropriate Question :-

Evaluate the following :-

\rm :\longmapsto\:\displaystyle\lim_{x \to -  \infty } \: sin \:  \frac{1}{x}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim_{x \to -  \infty } \: sin \:  \frac{1}{x}

To evaluate this limit, we use Method of Substitution

So, Substitute

 \red{\sf :\longmapsto\:\dfrac{1}{x}  \: =  \:  - \:  y \:  \: as \: x \to \:  -  \infty , \:  \: so \: y \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{y \to 0 } \: sin( - y)

\rm \:  =  \:  -  \: \displaystyle\lim_{y \to 0 } \: siny

\rm \:  =  \:  -  \: sin0

\rm \:  =  \: 0

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to -  \infty }  \bf \: \: sin \:  \frac{1}{x}  = 0 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions