Math, asked by yadavshagun771, 4 months ago

BEST is a rhombus and BE is produced to P and Q such that BP = BE = EQ, prove that
PR and QR are perpendicular to each other.

Answers

Answered by bipasha7513
0

Answer:

mark me barinliest

Step-by-step explanation:

ABCD is a rhombus.

P,Q and R are the mid-points of AB,BC and CD.

Join AC and BD.

In △DBC,

R and Q are the mid-points of DC and CB

∴  RQ∥DB                [ By mid-point theorem ]

∴  MQ∥ON       ---- ( 1 )   [ Parts of RQ and DB ]

Now, in △ACB,

P and Q are the mid-points of AB and BC

∴  AC∥PQ              [ By midpoint theorem ]

∴  OM∥NQ       ---- ( 2 )     [ OM and NQ are the parts of AC and PQ ]

From equation ( 1 ) and ( 2 )

⇒  MQ∥ON

⇒  ON∥NQ

Since, each pair of opposite side is parallel.

∴  ONQM is a parallelogram.

In ONQM,

⇒  ∠MON=90o            [ Diagonals of rhombus bisect each other ]

⇒  ∠MON=∠PQR       [ Opposite angles of parallelogram are equal ]

∴  ∠PQR=90o.

Hence, PQ⊥QR             ---- Hence proved

Similar questions