Physics, asked by janmejaymohanty1499, 1 year ago

भाई लोग बता दो। physics.​

Attachments:

Answers

Answered by Sk218
1

Answer:

See answer in above picture

Attachments:
Answered by dna63
1

\sf{\large{\underline{\underline{EXPLANATION:}}}}

\textbf{\underline{\underline{Question 2,,}}}</p><p>

\textbf{\underline{For 1st equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v=u+at}}}

As we know,,

\mathtt{\boxed{a=\frac{v-u}{t}}}

therefore,,

\mathtt{\boxed{\blue{v=u+at...(1)}}}

\textbf{\underline{For 2nd equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

Using calculus,

since,we know,,

\sf{\boxed{v=\frac{ds}{dt}}}

\sf{\implies{ds=vdt}}

Integrating both sides,,

\sf{\implies{\int_0^s{ds}=\int_0^t{v\,dt}}}

\sf{\implies{[s]_0^s=\int_0^t{(u+at)\,dt}}}

\sf{\implies{s-0=\int_0^t{u\,dt}\int_0^t{at\,dt}}}

\sf{\implies{s-0=u\int_0^t{\,dt}+a\int_0^t{t\,dt}}}

\sf{\implies{s=[t]_0^t+a[\frac{t^{2}}{2}]_0^t}}

\sf{\implies{s= u(t-0)+a(\frac{t^{2}}{2}-\frac{0^{2}}{2})}}

\sf{\implies{s= ut+\frac{at^{2}}{2}}}

Therefore,,

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}.......(2)}}}

\textbf{\underline{For 3rd equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v^{2}-u^{2}=2as}}}

Using calculus,,

since we know,,

\sf{\boxed{a=\frac{dv}{dt}}}

\sf{\implies{a=\frac{dv}{dt}\times{\frac{ds}{ds}}}}

\sf{\implies{a=\frac{dv}{ds}\times{\frac{ds}{dt}}}}

\sf{\implies{a=\frac{dv}{ds}\times{v}}}

\sf{\implies{ads=vdv}}

Integrating both sides,,

\sf{\implies{\int_0^s{a\,ds}=\int_u^v{v\,dv}}}

\sf{\implies{a\int_0^s{ds}=[\frac{v^{2}}{2}]_u^v}}

\sf{\implies{a[s]_0^s=\frac{v^{2}}{2}-\frac{u^{2}}{2}}}

\sf{\implies{a[s-0] = \frac{v^{2}-u^{2}}{2}}}

\sf{\implies{as = \frac{v^{2}-u^{2}}{2}}}

\sf{\implies{2as = v^{2}-u^{2}}}

Therefore,,

\mathtt{\boxed{\blue{v^{2}-u^{2}=2as</strong><strong>.</strong><strong>.</strong><strong>.</strong><strong>(</strong><strong>3</strong><strong>)</strong><strong>}}}

\rule{200}2

\textbf{\underline{\underline{Question 3,,}}}</p><p>

\sf{Given}\begin{cases}\sf{a=5ms^{-2}}\\ \sf{u=0ms^{-1}}\\ \sf{t=20s}\\ \sf{then,s=??}\end{cases}

\textbf{\underline{Using 2nd equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s= 0t+\frac{1}{2}\times{5}\times{20^{2}}}}

\sf{\implies{s= \cancel\dfrac{2000}{2}}}

\sf{\implies{s=1000m=1km}}

Therefore, distance covered,

s=1000m=1km

\rule{200}2

\textbf{\underline{\underline{Question 4,,}}}</p><p>

\sf{Given}\begin{cases}\sf{a=10ms^{-2}}\\ \sf{u=0ms^{-1}}\\ \sf{t=5s}\\ \sf{then,s=??}\end{cases}

\textbf{\underline{Using 2nd equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{s=ut+\frac{1}{2}at^{2}}}}

\sf{\implies{s= 0t+\frac{1}{2}\times{10}\times{5^{2}}}}

\sf{\implies{s= \cancel\dfrac{250}{2}}}

\sf{\implies{s=125m}}

Therefore, distance covered,

s=125m

\rule{200}2

\textbf{\underline{\underline{Question 5,,}}}</p><p>

\sf{Given}\begin{cases}\sf{a=-2cms^{-2}}\\ \sf{u=0ms^{-1}}\\ \sf{t=3s}\\ \sf{then,v=??}\end{cases}

\textbf{\underline{Using 1st equation of motion,,}}</p><p>

\mathtt{\boxed{\blue{v=u+at}}}

\sf{\implies{v=0+(-2)3}}

\sf{\implies{v=-6cms^{-1}}}

\rule{200}2

Hope it helps ❣️❣️❣️

Similar questions