India Languages, asked by gameraj211, 1 month ago

भाषा की ओर Sure निम्नलिखित वर्णों से समानार्थी और विरुद्धार्थी शब्दों की जोड़ियाँ ढूँढ़ो और अपने वाक्यों में प्रयोग करके कॉपी में लिखो: FIED पुष्प = फूल रात x दिन स-----करीब सब-x- बीब्त --X- ह स्तल अ ब मा न द ष्प मे उ द स छो डा. ज बा फू नी पा a a दि टा म्मा पु वा. p​

Answers

Answered by itzunknowngirl92
31

\huge{\boxed{\boxed{\colorbox{aqua}{❥︎ANSWER}}}}

The chemical compound capsaicin (8-methyl-N-vanillyl-6-nonenamide) is the active component of chili peppers, which are plants belonging to the genus Capsicum.

Answered by ITZURADITYAKING
9

Answer:

 {\huge{\boxed{\mathcal{\orange{ANSWGiven :-</p><p></p><p>→ \sf{n^{th}}nth term of the AP = 4n +5</p><p></p><p>To find :-</p><p></p><p>\sf{3^{rd}}3rd  term of the AP</p><p></p><p>Solution :-</p><p></p><p>Let \sf{t_{n}}tn denote the \sf{n^{th}}nth  term of the sequence</p><p>\sf{t_{n}= 4n + 5}tn=4n+5  </p><p>So, first term = \sf{t_{1}}t1 \sf{= 4(1)+5 = 9}=4(1)+5=9</p><p>Second term =  \sf{t_{2} = 4(2) + 5 = 13}t2=4(2)+5=13</p><p>Third term = \sf{t_{3} = 4(3) + 5 = 17 }t3=4(3)+5=17</p><p></p><p>               \boxed{\sf{t_{3} = 17 }}t3=17</p><p></p><p>\bold{3^{rd} \ term \ of \ the \ AP = 17}3rd term of the AP=17</p><p></p><p>ER}}}}}What is western music ???Given :-

→ \sf{n^{th}}nth term of the AP = 4n +5

To find :-

\sf{3^{rd}}3rd  term of the AP

Solution :-

Let \sf{t_{n}}tn denote the \sf{n^{th}}nth  term of the sequence

\sf{t_{n}= 4n + 5}tn=4n+5  

So, first term = \sf{t_{1}}t1 \sf{= 4(1)+5 = 9}=4(1)+5=9

Second term =  \sf{t_{2} = 4(2) + 5 = 13}t2=4(2)+5=13

Third term = \sf{t_{3} = 4(3) + 5 = 17 }t3=4(3)+5=17

               \boxed{\sf{t_{3} = 17 }}t3=17

\bold{3^{rd} \ term \ of \ the \ AP = 17}3rd term of the AP=17

C 2. The n'" term of an arithmetic progression is a = 4n+ 5 then the 3rd term is : A. 5 B. 9 D. 17 C. 13Given :-

→ \sf{n^{th}}nth term of the AP = 4n +5

To find :-

\sf{3^{rd}}3rd  term of the AP

Solution :-

Let \sf{t_{n}}tn denote the \sf{n^{th}}nth  term of the sequence

\sf{t_{n}= 4n + 5}tn=4n+5  

So, first term = \sf{t_{1}}t1 \sf{= 4(1)+5 = 9}=4(1)+5=9

Second term =  \sf{t_{2} = 4(2) + 5 = 13}t2=4(2)+5=13

Third term = \sf{t_{3} = 4(3) + 5 = 17 }t3=4(3)+5=17

               \boxed{\sf{t_{3} = 17 }}t3=17

\bold{3^{rd} \ term \ of \ the \ AP = 17}3rd term of the AP=17

Given :-

→ \sf{n^{th}}nth term of the AP = 4n +5

To find :-

\sf{3^{rd}}3rd  term of the AP

Solution :-

Let \sf{t_{n}}tn denote the \sf{n^{th}}nth  term of the sequence

\sf{t_{n}= 4n + 5}tn=4n+5  

So, first term = \sf{t_{1}}t1 \sf{= 4(1)+5 = 9}=4(1)+5=9

Second term =  \sf{t_{2} = 4(2) + 5 = 13}t2=4(2)+5=13

Third term = \sf{t_{3} = 4(3) + 5 = 17 }t3=4(3)+5=17

               \boxed{\sf{t_{3} = 17 }}t3=17

\bold{3^{rd} \ term \ of \ the \ AP = 17}3rd term of the AP=17

Similar questions