Math, asked by prince26147, 11 months ago

Bhawna bought two fans for 3605. She sold one at a profit of 15% and the other at a loss of 9°/•.
If Bhawna obtained the same amount for each fan, find the cost price of each fan.

Answers

Answered by Anonymous
60

 \bf \red{ \underline{ \underline{solution}}}

Let C.P of first fan= x

Then C.P of second fan = Rupees (3605-x)

  • For the sale of first fan,profit=15°/•

sp \: offirst \: fan =  \purple {\frac{100 + profit\%}{100} \times cp}

 = ( \frac{100 + 15}{100}) \times x

  =  \frac{115x}{100}

  • For sale of second fan,loss=9°/

sp \: of \: 2nd \: fan = \blue { \frac{100 - loss\%}{100}  \times cp}

 = ( \frac{100 - 9}{100} ) \times( 3605 - x)

 =  \frac{91(3605 - x)}{100}

By the given conditions

S.P of first fan=S.P of Second fan

 =  >  \:  \frac{115x}{100}  =  \frac{19(3605 - x)}{100}

 =  > 115x = 91(3605 - x)

  =  > 115x = 91 \times 3605 - 91x

 =  > 115x + 91x = 91 \times 3605

 =  > 206x = 91 \times 3605

 =  > x =  \frac{91 \times 3605}{206}

 =  > x =  \frac{91 \times 35}{2}

 =  > x =  \frac{3185}{2}

 => x = 1592.50

  \blue{\therefore cp \: of \: first \: fan} =  > x =  \bold{1592.50}

 \: cp \: of \: 2nd \: fan = > 3605 - x

 =  > 3605 - 1592.50

 \:  =  >  \bold{2012.50}

Answered by Anonymous
35

AnswEr :

\bf{\green{\underline{\underline{\bf{Given\::}}}}}

Bhawna bought two fans for Rs.3605. She sold one of at a profit of 15% and other at a loss of 9%. If Bhawna obtained the same amount for each fan.

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The cost price of each fan.

\bf{\purple{\underline{\underline{\bf{Explanation\::}}}}}

Let the 1st fan of cost price be Rs.R

Let the 2nd fan of cost price be Rs.M

So,

\leadsto\tt{R+M=3605}\\\\\leadsto\tt{\pink{M=3605-R...........................(1)}}

\dag\bf{\underline{\underline{\bf{Selling\:price\:(S.P.)\:of\:1st\:fan\::}}}}}}

\mapsto\sf{S.P.=\dfrac{100+profit\%}{100} \times C.P.}\\\\\\\\\mapsto\sf{S.P.=\dfrac{100+15}{100} \times R}\\\\\\\\\mapsto\sf{S.P.=\dfrac{115}{100} \times R}\\\\\\\\\mapsto\sf{\purple{S.P.=\dfrac{115R}{100} }}

\dag\bf{\underline{\underline{\bf{Selling\:price\:(S.P.)\:of\:2nd\:fan\::}}}}}}

\mapsto\sf{S.P.=\dfrac{100-loss\%}{100} \times C.P.}\\\\\\\\\mapsto\sf{S.P.=\dfrac{100-9}{100} \times M}\\\\\\\\\mapsto\sf{S.P.=\dfrac{91}{100} \times M}\\\\\\\\\mapsto\sf{\purple{S.P.=\dfrac{91M}{100} }}

\bf{\red{\underline{\underline{\tt{According\:to\:the\:question\::}}}}}

\Rightarrow\tt{\dfrac{115R}{\cancel{100}} =\dfrac{91M}{\cancel{100}} }\\\\\\\Rightarrow\tt{115R=91M}\\\\\\\Rightarrow\tt{115R=91(3605-R)\:\:\:\:\:\:\big[from(1)\big]}\\\\\\\Rightarrow\tt{115R=328055-91R}\\\\\\\Rightarrow\tt{115R+91R=328055}\\\\\\\Rightarrow\tt{206R=328055}\\\\\\\Rightarrow\tt{R=\cancel{\dfrac{328055}{206} }}\\\\\\\Rightarrow\tt{\purple{R\:=\:Rs.1592.5}}

Putting the value of R in equation (1), we get;

\leadsto\tt{M=Rs.(3605-1592.5)}\\\\\leadsto\tt{\purple{M=Rs.2012.5}}

Thus,

\underbrace{\sf{The\:cost\:price\:(C.P.)\:of\:1st\:fan\:=\:Rs.1592.5}}}}\\\\\underbrace{\sf{The\:cost\:price\:(C.P.)\:of\:2nd\:fan\:=\:Rs.2012.5}}}}}

Similar questions