Physics, asked by aditya730222, 10 months ago

biconcave and biconvex lenses with a radius of curvature of 40 cm are kept in contact. the refractive index of the lenses is 4/3 and 3/2 respectively. find the position and nature of the image of the object placed at a distance of 45 cm from the combined lens.

Answers

Answered by LittleNaughtyBOY
4

 \huge{\boxed{ \boxed{\mathbb{ \red{ANSWER}}}}}

For BiConvex lens,

R1 = -R2 = 40cm

n = 1.5

F = ?

By using the formula of focal length

1/f = (n-1)[(1/R1) - (1/R2)]

f = 40 cm.

Position of the object = Ui = 20cm

Nature of object = Real and Inverted.

Answered by RvChaudharY50
23

\huge\blue{Given:}

R = 40cm

n1 = \huge{\frac{</strong><strong>4</strong><strong>}{</strong><strong>3</strong><strong>}}

n2 = \huge{\frac{</strong><strong>3</strong><strong>}{</strong><strong>2</strong><strong>}}

u = (-45cm)

\color {red}\huge\bold\star\underline\mathcal{Question:-}

We have to find position and nature of image ?

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

we know that ,,,

 \frac{n2}{v}  -  \frac{n1}{u}  =  \frac{n2 - n1}{r} \\  \\  \\

 \frac{(3\div2)}{v}  -  \frac{(4 \div 3)}{( - 45)}  =  \frac{(3 \div 2) - (4 \div 3)}{40}  \\  \\  \frac{3}{2v}  +  \frac{4}{135}  =  \frac{1}{240}

 \frac{3}{2v}  =  \frac{ - 55}{2160}  \\  \\  \frac{1}{v} \:  \:  =  \frac{ - 11}{584}

v \:  \:  = ( - 53.09)cm

so \: the \:  image  \: is  \: behind \:  the \:  mirror \: and \\  \\  \:  the \:  image \:  is \:  virtual  \: and  \: upright...

&lt;font color=red&gt;&lt;marquee behaviour=alternate&gt;❤️_/\_</strong><strong>H</strong><strong>o</strong><strong>p</strong><strong>e</strong><strong> </strong><strong>it</strong><strong> </strong><strong>Helps</strong><strong> </strong><strong>You</strong><strong>_/\_❤️&lt;/marquee&gt;&lt;/font&gt;

Similar questions