binding of magnesium ions by teichoid acids in bacterial cell wall protects bacteria from?
Answers
Answer:
Metals bind to the bacterial cell wall, yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane as lipoteichoic acid or covalently bound to the cell wall as wall teichoic acid. The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, which contradicts previous reports that calcium binding is 100 % dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger than previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, which means that the binding affinity decreases as more ions become bound to the sample. For Ca(2+), Region I has a KA = (1.0 ± 0.2) × 10(6) M(-1) and Region II has a KA = (0.075 ± 0.058) × 10(6) M(-1). For Mg(2+), KA1 = (1.5 ± 0.1) × 10(6) and KA2 = (0.17 ± 0.10) × 10(6). A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 and 0.67 ± 0.03 µmol/mg for Ca(2+) and Mg(2+) respectively. These data contradict the current paradigm of only a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent. This suggests a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations.
Explanation: