Math, asked by afeef200420, 3 months ago

binomial theorem question​

Attachments:

Answers

Answered by Mrcookie34
1

here's the answer :)

hope it's a little helpful and understandable since I used factors here.

Attachments:
Answered by EnchantedGirl
12

★Given :

  • The coefficients of 5th,6th&7th terms in the expansion of (1+x)ⁿ are in AP.

★To find :

  • Value of n.

★Solution :

We know,

\displaystyle \sf (1+x)^n\longrightarrow \ ^nC_0 + ^nC_1x+^nC_2x^2...^nC_nx^n \\

According to question,

\sf T_5,T_6,T_7 are in AP.Then,

\rightarrow \sf T_6-T_5 = T_7-T_6 \\\\\rightarrow \sf T_6 + T_6 = T_7 + T_5 \\\\\rightarrow \sf 2T_6= T_7+T_5\longrightarrow (1)\\

And we know,

  • \sf T_5 = \ ^nC_4
  • \sf T_6 = \ ^nC_5
  • \sf T_7 = \ ^nC_6

Substituting these in equation 1,

\rightarrow \sf 2\ ^nC_5 = \ ^nC_6+\ ^nC_4 \\

\displaystyle \sf \rightarrow 2\ \frac{n\ !}{(n-5)!5!} = \frac{n\ !}{(n-4)!4!} +\frac{n\ !}{(n-6)!6!} \\

\displaystyle \sf \rightarrow \frac{2}{(n-5)5} = \frac{1}{(n-4)(n-5)} + \frac{1}{6. 5} \\

\displaystyle \sf \rightarrow \frac{2}{\cancel{(n-5)}\cancel{5}} = \frac{30+(n-4)(n-5)}{6.\cancel{5}(n-4)\cancel{(n-5)}} \\

\displaystyle \sf \rightarrow 12(n-4)=30+(n-4)(n-5)\\

\sf \rightarrow 30 = 12(n-4)-(n-4)(n-5) \\

\sf \rightarrow 30 = (n-4)(12-n+5)\\

\rightarrow \sf 30 = (17-n)(n-4) \\

\rightarrow \sf -n^2+21n-68=30\\

\rightarrow \sf n^2+21n+98=0 \\

\rightarrow \sf n^2 - 14n-7n+98 = 0 \\

\rightarrow \sf (n-14)(n-7)=0 \\

\rightarrow \boxed{\bold{n = 14,7}}\\

∴ The value of n is 14 or 7.

    ________________

Similar questions