Biography of great Indian mathematicians...
plz help me..
need answer. to complete my project..
Answers
Answer:
Srinivasa Ramanujan was born in southern India in 1887. After demonstrating an intuitive grasp of mathematics at a young age, he began to develop his own theories and in 1911 published his first paper in India. Two years later Ramanujan began a correspondence with British mathematician G. H
Hope this helps
Kindly mark as brainliest
Srinivasa Ramanujan, (born December 22, 1887, Erode, India—died April 26, 1920, Kumbakonam), Indian mathematician whose contributions to the theory of numbers include pioneering discoveries of the properties of the partition function.
When he was 15 years old, he obtained a copy of George Shoobridge Carr’s Synopsis of Elementary Results in Pure and Applied Mathematics, 2 vol. (1880–86). This collection of thousands of theorems, many presented with only the briefest of proofs and with no material newer than 1860, aroused his genius. Having verified the results in Carr’s book, Ramanujan went beyond it, developing his own theorems and ideas. In 1903 he secured a scholarship to the University of Madras but lost it the following year because he neglected all other studies in pursuit of mathematics.
Ramanujan continued his work, without employment and living in the poorest circumstances. After marrying in 1909 he began a search for permanent employment that culminated in an interview with a government official, Ramachandra Rao. Impressed by Ramanujan’s mathematical prowess, Rao supported his research for a time, but Ramanujan, unwilling to exist on charity, obtained a clerical post with the Madras Port Trust.
Ramanujan’s knowledge of mathematics (most of which he had worked out for himself) was startling. Although he was almost completely unaware of modern developments in mathematics, his mastery of continued fractions was unequaled by any living mathematician. He worked out the Riemann series, the elliptic integrals, hypergeometric series, the functional equations of the zeta function, and his own theory of divergent series. On the other hand, he knew nothing of doubly periodic functions, the classical theory of quadratic forms, or Cauchy’s theorem, and he had only the most nebulous idea of what constitutes a mathematical proof. Though brilliant, many of his theorems on the theory of prime numbers were wrong.