Biosynthesis of coenzyme a requires purine. Explain
Answers
Answered by
3
Biosynthesis
Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to ribose 5-phosphate. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which is the first compound in the pathway to have a completely formed purine ring system.
IMP
The synthesis of IMP.
The color scheme is as follows: enzymes, coenzymes, substrate names, metal ions, inorganic molecules
Inosine monophosphate is synthesized on a pre-existing ribose-phosphate through a complex pathway . The source of the carbon and nitrogen atoms of the purine ring, 5 and 4 respectively, come from multiple sources. The amino acid glycine contributes all its carbon (2) and nitrogen (1) atoms, with additional nitrogen atoms from glutamine (2) and aspartic acid (1), and additional carbon atoms from formyl groups (2), which are transferred from the coenzyme tetrahydrofolate as 10-formyltetrahydrofolate, and a carbon atom from bicarbonate (1). Formyl groups build carbon-2 and carbon-8 in the purine ring system, which are the ones acting as bridges between two nitrogen atoms.
A key regulatory step is the production of 5-phospho-α-D-ribosyl 1-pyrophosphate (PRPP) by ribose phosphate pyrophosphokinase, which is activated by inorganic phosphate and inactivated by purine ribonucleotides. It is not the committed step to purine synthesis because PRPP is also used in pyrimidine synthesis and salvage pathways.
The first committed step is the reaction of PRPP, glutamine and water to 5'-phosphoribosylamine (PRA), glutamate, and pyrophosphate - catalyzed by amidophosphoribosyltransferase, which is activated by PRPP and inhibited by AMP, GMP and IMP.
PRPP + L-Glutamine + H2O → PRA + L-Glutamate + PPi
In the second step react PRA, glycine and ATP to create GAR, ADP, and pyrophosphate - catalyzed by phosphoribosylamine—glycine ligase (GAR synthetase). Due to the chemical lability of PRA, which has a half-life of 38 seconds at PH 7.5 and 37 °C, researchers have suggested that the compound is channeled from amidophosphoribosyltransferase to GAR synthetase in vivo.
PRA + Glycine + ATP → GAR + ADP + Pi
The third is catalyzed by phosphoribosylglycinamide formyltransferase.
GAR + fTHF → fGAR + THF
The fourth is catalyzed by phosphoribosylformylglycinamidine synthase.
fGAR + L-Glutamine + ATP → fGAM + L-Glutamate + ADP + Pi
The fifth is catalyzed by AIR synthetase (FGAM cyclase).
fGAM + ATP → AIR + ADP + Pi + H2O
The sixth is catalyzed by phosphoribosylaminoimidazole carboxylase.
AIR + CO2 → CAIR + 2H+
The seventh is catalyzed by phosphoribosylaminoimidazolesuccinocarboxamide synthase.
CAIR + L-Aspartate + ATP → SAICAR + ADP + Pi
The eight is catalyzed by adenylosuccinate lyase.
SAICAR → AICAR + Fumarate
The products AICAR and fumarate move on to two different pathways. AICAR serves as the reactant for the ninth step, while fumarate is transported to the citric acid cycle which can then skip the carbon dioxide evolution steps to produce malate. The conversion of fumarate to malate is catalyzed by fumarase. In this way, fumarate connects purine synthesis to the citric acid cycle.
The ninth is catalyzed by phosphoribosylaminoimidazolecarboxamide formyltransferase.
AICAR + fTHF → FAICAR + THF
The last step is catalyzed by Inosine monophosphate synthase.
FAICAR → IMP + H2O
In eukaryotes the second, third, and fifth step are catalyzed by trifunctional purine biosynthetic protein adenosine-3, which is encoded by the GART gene.
Both ninth and tenth step are accomplished by a single protein named Bifunctional purine biosynthesis protein PURH, encoded by the ATIC gene.
my answer is large .sorry .
if the answer helps you then don't forget to make me as brainliest.
Purines are biologically synthesized as nucleotides and in particular as ribotides, i.e. bases attached to ribose 5-phosphate. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which is the first compound in the pathway to have a completely formed purine ring system.
IMP
The synthesis of IMP.
The color scheme is as follows: enzymes, coenzymes, substrate names, metal ions, inorganic molecules
Inosine monophosphate is synthesized on a pre-existing ribose-phosphate through a complex pathway . The source of the carbon and nitrogen atoms of the purine ring, 5 and 4 respectively, come from multiple sources. The amino acid glycine contributes all its carbon (2) and nitrogen (1) atoms, with additional nitrogen atoms from glutamine (2) and aspartic acid (1), and additional carbon atoms from formyl groups (2), which are transferred from the coenzyme tetrahydrofolate as 10-formyltetrahydrofolate, and a carbon atom from bicarbonate (1). Formyl groups build carbon-2 and carbon-8 in the purine ring system, which are the ones acting as bridges between two nitrogen atoms.
A key regulatory step is the production of 5-phospho-α-D-ribosyl 1-pyrophosphate (PRPP) by ribose phosphate pyrophosphokinase, which is activated by inorganic phosphate and inactivated by purine ribonucleotides. It is not the committed step to purine synthesis because PRPP is also used in pyrimidine synthesis and salvage pathways.
The first committed step is the reaction of PRPP, glutamine and water to 5'-phosphoribosylamine (PRA), glutamate, and pyrophosphate - catalyzed by amidophosphoribosyltransferase, which is activated by PRPP and inhibited by AMP, GMP and IMP.
PRPP + L-Glutamine + H2O → PRA + L-Glutamate + PPi
In the second step react PRA, glycine and ATP to create GAR, ADP, and pyrophosphate - catalyzed by phosphoribosylamine—glycine ligase (GAR synthetase). Due to the chemical lability of PRA, which has a half-life of 38 seconds at PH 7.5 and 37 °C, researchers have suggested that the compound is channeled from amidophosphoribosyltransferase to GAR synthetase in vivo.
PRA + Glycine + ATP → GAR + ADP + Pi
The third is catalyzed by phosphoribosylglycinamide formyltransferase.
GAR + fTHF → fGAR + THF
The fourth is catalyzed by phosphoribosylformylglycinamidine synthase.
fGAR + L-Glutamine + ATP → fGAM + L-Glutamate + ADP + Pi
The fifth is catalyzed by AIR synthetase (FGAM cyclase).
fGAM + ATP → AIR + ADP + Pi + H2O
The sixth is catalyzed by phosphoribosylaminoimidazole carboxylase.
AIR + CO2 → CAIR + 2H+
The seventh is catalyzed by phosphoribosylaminoimidazolesuccinocarboxamide synthase.
CAIR + L-Aspartate + ATP → SAICAR + ADP + Pi
The eight is catalyzed by adenylosuccinate lyase.
SAICAR → AICAR + Fumarate
The products AICAR and fumarate move on to two different pathways. AICAR serves as the reactant for the ninth step, while fumarate is transported to the citric acid cycle which can then skip the carbon dioxide evolution steps to produce malate. The conversion of fumarate to malate is catalyzed by fumarase. In this way, fumarate connects purine synthesis to the citric acid cycle.
The ninth is catalyzed by phosphoribosylaminoimidazolecarboxamide formyltransferase.
AICAR + fTHF → FAICAR + THF
The last step is catalyzed by Inosine monophosphate synthase.
FAICAR → IMP + H2O
In eukaryotes the second, third, and fifth step are catalyzed by trifunctional purine biosynthetic protein adenosine-3, which is encoded by the GART gene.
Both ninth and tenth step are accomplished by a single protein named Bifunctional purine biosynthesis protein PURH, encoded by the ATIC gene.
my answer is large .sorry .
if the answer helps you then don't forget to make me as brainliest.
Similar questions