Bisectors of angles A,B and C of a triangle ABC intersect it's circumcircle at D,E and F respectively prove that the angles of a triangle DEF are 90°1/2A,90°1/2B and 90°1/2C
Answers
Answered by
11
It is given that BE is the bisector of ∠B
.: ∠ABE = ∠B/2
However, ∠ADE = ∠ABE (Angles in the same segment for chord AE)
∠ADE = ∠B/2
Similarly, ∠ACF = ∠ADF = ∠C/2 (Angle in the same segment for chord AF)
∠D = ∠ADE + ∠ADF
∠D = ∠B/2 + ∠C/2
= ½ ( ∠B + ∠C )
= ½ ( 180 – ∠A ) {since ∠A + ∠B + ∠C =180 ; angle sum property }
= 90 – ∠A/2
Similarly, it can be proved that
∠E = 90 – ∠B/2 &
∠F = 90 – ∠C/2
hope this helps u
Answered by
3
Answer:
Step-by-step explanation:
It is given that BE is the bisector of ∠B
.: ∠ABE = ∠B/2
However, ∠ADE = ∠ABE (Angles in the same segment for chord AE)
∠ADE = ∠B/2
Similarly, ∠ACF = ∠ADF = ∠C/2 (Angle in the same segment for chord AF)
∠D = ∠ADE + ∠ADF
∠D = ∠B/2 + ∠C/2
= ½ ( ∠B + ∠C )
= ½ ( 180 – ∠A ) {since ∠A + ∠B + ∠C =180 ; angle sum property }
= 90 – ∠A/2
Similarly, it can be proved that
∠E = 90 – ∠B/2 &
∠F = 90 – ∠C/2
Similar questions