Math, asked by zebanzm, 6 months ago

Bisectors of angles B and C of a triangle ABC intersect each other at the point O. Prove that ∠BOC = 900+ 1/2∠A.

Answers

Answered by atul5283
0

Answer:

ANSWER

Given :

A △ ABC such that the bisectors of ∠ ABC and ∠ ACB meet at a point O.

To prove :

∠BOC=90

o

+

2

1

∠A

Proof :

In △ BOC, we have

∠1+∠2+∠BOC=180

o

....(1)

In △ ABC, we have,

∠A+∠B+∠C=180

o

∠A+2(∠1)+2(∠2)=180

o

2

∠A

+∠1+∠2=90

o

∠1+∠2=90

o

2

∠A

Therefore, in equation 1,

90

o

2

∠A

+∠BOC=180

o

∠BOC=90

o

+

2

∠A

solution

Answered by sumanthbhat99
3

Answer:

Step-by-step explanation:

∠OBC=1/2∠ABC

∠OCB=1/2∠ACB

∠OBC+∠OCB+∠BOC=180°(ASP)

∠BOC=180°-(∠OBC+∠OCB)      .......(1)

∠A+∠ABC+∠ACB=180°(ASP)

DIVIDE BY 2

∠A/2+∠ABC/2+∠ACB/2=180/2°

1/2∠A=90°-(∠OBC+∠OCB)

ADD 90° ON BOTH SIDES

1/2∠A+90°=90°+90°-(∠OBC+∠OCB)

          =180°-(∠OBC+∠OCB)....(2)

    RHS OF EQ 1 AND 2 ARE EQUAL

∴∠BOC=1/2∠A+90°

                                    Hence Proved

Similar questions