Math, asked by llMichFabulousll, 20 days ago

bisectors of interior Angle B and exterior angle ACD triangle ABC intersect at the point T prove that

∠BTC = 1/2 ∠BAC​

Answers

Answered by tjfkroerhtntm
4

Answer:

Please refer to both the attachments

Step-by-step explanation:

Thanks:-

noobiepro169@

Attachments:
Answered by YxMissAnglexY
127

⚝ \:  \: {\underline{\underline\mathfrak\red{Question:--}}}

Bisectors of interior Angle B and exterior angle ACD triangle ABC intersect at the point T prove that

∠BTC = 1/2 ∠BAC

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

⚘ \: {\underline{\underline\mathfrak\red{Answer:--}}}

❥ \:  \: {\underline{\boxed{\bf\green{Given:}}}}

△ ABC, produce BC to D and the bisectors of ∠ABC and ∠ACD meet at point T.

❥ \: {\underline{\boxed{\bf\green{To  \:  \: prove:}}}}

\bf{∠BTC = \frac{1}{2} ∠BAC }

❥ \:  \: {\underline{\boxed{\bf\green{proof:}}}}

\bf{In \:  Δ ABC,  \: BC \:  is  \:  extended  \:  to \:  D}

❐ ∠ACD = ∠B + ∠A (Exterior ∠ prop.)

½ ∠ACD = ½∠B + ½∠A

∠1 = ½ ∠B + ½ ∠A ---------------(1)

❐ In ΔTBC, BC is extended to D

∠1 = ∠3 + ∠T

∠1 = ½ ∠B + ∠T -----------------(2)

❐ From (1) & (2)

½ ∠B + ∠T = ½ ∠B + ½ ∠A

{\boxed{\bf\purple{∠BTC = \frac{1}{2}  \: ∠BAC }}}

❒ Hence, proved.

\pink{▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀---⚡

Attachments:
Similar questions