Bisectors of the angles A,B and C of a triangle ABC intersect it's circumcircle at D,England and Friday respectively prove that the angles of a triangle DEF are 90°1/2A,90°1/2B and 90°1/2C
Answers
Answered by
3
here is ur answer
It is given that BE is the bisector of ∠B
.: ∠ABE = ∠B/2
However, ∠ADE = ∠ABE (Angles in the same segment for chord AE)
∠ADE = ∠B/2
Similarly, ∠ACF = ∠ADF = ∠C/2 (Angle in the same segment for chord AF)
∠D = ∠ADE + ∠ADF
∠D = ∠B/2 + ∠C/2
= ½ ( ∠B + ∠C )
= ½ ( 180 – ∠A ) {since ∠A + ∠B + ∠C =180 ; angle sum property }
= 90 – ∠A/2
Similarly, it can be proved that
∠E = 90 – ∠B/2 &
∠F = 90 – ∠C/2
hope this helps u....
It is given that BE is the bisector of ∠B
.: ∠ABE = ∠B/2
However, ∠ADE = ∠ABE (Angles in the same segment for chord AE)
∠ADE = ∠B/2
Similarly, ∠ACF = ∠ADF = ∠C/2 (Angle in the same segment for chord AF)
∠D = ∠ADE + ∠ADF
∠D = ∠B/2 + ∠C/2
= ½ ( ∠B + ∠C )
= ½ ( 180 – ∠A ) {since ∠A + ∠B + ∠C =180 ; angle sum property }
= 90 – ∠A/2
Similarly, it can be proved that
∠E = 90 – ∠B/2 &
∠F = 90 – ∠C/2
hope this helps u....
Answered by
2
Answer:
Here, ABC is inscribed in a circle with center O and the bisectors of ∠A, ∠B and ∠C intersect the circumcircle at D, E and F respectively.
Now, join DE, EF and FD
As angles in the same segment are equal, so,
∠FDA = ∠FCA ————-(i)
∠FDA = ∠EBA ————-(i)
Adding equations (i) and (ii) we have,
∠FDA + ∠EDA = ∠FCA + ∠EBA
Or, ∠FDE = ∠FCA + ∠EBA = (½)∠C + (½)∠B
We know, ∠A + ∠B + ∠C = 180°
So, ∠FDE = (½)[∠C + ∠B] = (½)[180° – ∠A]
⇒ ∠FDE = [90 – (∠A/2)]
In a similar way,
∠FED = [90 – (∠B/2)]
And,
∠EFD = [90 – (∠C/2)]
Attachments:
Similar questions