Math, asked by shakti091980, 4 months ago

Bit Find the volume of cylinder whose
radius of base = 7 height = 50 cm​

Answers

Answered by WaterPearl
234

Question

↬ Find the volume of cylinder whose

radius of base = 7 height = 50 cm.

Answer

Given:-

\large\pink\leadstoRadius = 7 cm

\large\pink\leadstoHeight = 50 cm

To Find:-

\large\pink\leadstoVolume of the cylinder = ?

_______________________________________

Let's Solve

Volume of the cylinder = π r² h

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = 22/7 × 7 × 7×50

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = 22 × 7 × 50

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀= 7700 cm³

Required Answer

Volume of the cylinder is 7700 cm³.

________________________________

More to know

\large\purple\leadstoFormulas Of cylinder:-

\large\pink\leadstoVolume of the cylinder = π r² h

\large\pink\leadstoSurface Area of cylinder = 2πrh + 2πr²

\large\pink\leadstoLateral surface Area of cylinder = 2πrh

\large\pink\leadstoBase Area = πr²

Answered by CɛƖɛxtríα
43

{\boxed{\sf{Appropriate\:question}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎Find the volume of a cylinder whose radius of the base is 7 cm and height is 50 cm.

{\boxed{\sf{Step\:by\:step\: explanation}}}

{\underline{\underline{\bf{Given:}}}}

  • Base radius of a cylinder = 7 cm.
  • Height of the cylinder = 50 cm.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The volume of the cylinder.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Volume}_{[Cylinder]}=\pi{r}^{2}h\:cu.units}}}

\:\:\:\:\:\:\:\:\:\:\bullet{\sf{\:r=base\:radius}}

\:\:\:\:\:\:\:\:\:\:\bullet{\sf{\:h=height}}

{\underline{\underline{\bf{Solution:}}}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎The volume of the cylinder can be found by inserting the given measures of radius and height in the formula:

\rightarrowtail{\sf{\pi{r}^{2}h\:cu.units}}

Here, the value of \sf{\pi} can be taken as \sf{\dfrac{22}{7}}. Let's do it !!

\:\:\:\:\:\:\:\:\implies{\sf{\dfrac{22}{7}\times 7^2\times 50}}

\:\:\:\:\:\:\:\:\implies{\sf{\dfrac{22}{\cancel{7}}\times \cancel{7}\times 7\times 50}}

\:\:\:\:\:\:\:\:\implies{\sf{22\times 7\times 50}}

\:\:\:\:\:\:\:\:\implies{\sf{154\times 50}}

\:\:\:\:\:\:\:\:\implies{\frak{\red{\underline{\underline{7,700\:{cm}^{3}}}}}}

{\underline{\underline{\bf{Required\:answer:}}}}

  • The volume of the cylinder is 7,700 cm³.

______________________________________________

{\boxed{\sf{Some\:related\: formulae}}}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Cylinder]}=2\pi r(h+r)\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{CSA}_{[Cylinder]}=2\pi rh\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{Volume}_{[Cone]}=\dfrac{1}{3}\pi r^2h\:cu.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Cone]}=\pi r(l+r)\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{CSA}_{[Cone]}=\pi rl\:sq.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{Volume}_{[Sphere]}=\dfrac{4}{3}\pi{r}^{3}\:cu.units}

\:\:\:\:\:\:\:\:\sf{\bullet\:{TSA}_{[Sphere]}=4\pi r^2\:sq.units}

Similar questions