BL and CM are medians of a△ABC, right-angle at A. Prove that
4(BL² + CM² = 5BC²).
Answers
- Given
A △ABC in which BL and CM are medians and ∠A = 90°
- To Prove
4(BL² + CM²) = 5BC²
- Proof
In △BAC, ∠A = 90°
∴ BC² = AB² + AC² ------------ (i)
[ By Pythagoras theorem ]
.
In △BAL, ∠A = 90°
∴ BL² = AL² + AB²
[ By Pythagoras theorem ]
⇒ BL² = + AB²
⇒ BL² = +AB²
⇒ 4BL² = AC² + 4AB² ------------ (ii)
.
In △CAM, ∠A = 90°
∴ CM² = AM² + AC²
⇒ CM² = + AC²
⇒ CM² = + AB² + AC²
⇒ 4CM² = AB² + 4AC² ------------ (iii)
.
On adding (ii) and (iii), we get
4(BL² + CM²) = 5(AB² + AC²).
.
Hence, 4(BL² + CM²) = 5BC² [ using (i) ]
──────────────────────
A △ABC in which BL and CM are medians and ∠A = 90°
To Prove -
4(BL² + CM²) = 5BC²
In △BAC, ∠A = 90°
∴ BC² = AB² + AC² ────── (i)
[ By Pythagoras theorem ]
ㅤㅤ
In △BAL, ∠A = 90°
∴ BL² = AL² + AB²
[ By Pythagoras theorem ]
⇒ BL² = 2 + AB²
⇒ BL² = 2 +AB²
⇒ 4BL² = AC² + 4AB² ───── (ii)
ㅤㅤ
In △CAM, ∠A = 90°
∴ CM² = AM² + AC²
⇒ CM² = 2 + AC²
⇒ CM² =2 + AB² + AC²
⇒ 4CM² = AB² + 4AC² ───── (iii)
ㅤㅤㅤㅤ
On adding (ii) and (iii), we get
On adding (ii) and (iii), we get4(BL² + CM²) = 5(AB² + AC²).
ㅤㅤㅤㅤ
Hence, 4(BL² + CM²) = 5BC² [ using (i) ]
─────────────────────