Math, asked by Anonymous, 10 months ago

BL and CM are medians of a△ABC, right-angle at A. Prove that
4(BL² + CM² = 5BC²).​

Answers

Answered by Anonymous
88
  • Given

A △ABC in which BL and CM are medians and ∠A = 90°

  • To Prove

4(BL² + CM²) = 5BC²

  • Proof

In △BAC, ∠A = 90°

∴ BC² = AB² + AC² ------------ (i)

[ By Pythagoras theorem ]

.

In △BAL, ∠A = 90°

∴ BL² = AL² + AB²

[ By Pythagoras theorem ]

⇒ BL² = {(\frac{1}{2}\:AC)}^{2} + AB²

⇒ BL² = {(\frac{1}{4}\:AC)}^{2} +AB²

⇒ 4BL² = AC² + 4AB² ------------ (ii)

.

In △CAM, ∠A = 90°

∴ CM² = AM² + AC²

⇒ CM² = {(\frac{1}{2}\:AB)}^{2} + AC²

⇒ CM² = {(\frac{1}{4}\:AC)}^{2} + AB² + AC²

⇒ 4CM² = AB² + 4AC² ------------ (iii)

.

On adding (ii) and (iii), we get

4(BL² + CM²) = 5(AB² + AC²).

.

Hence, 4(BL² + CM²) = 5BC² [ using (i) ]

Attachments:
Answered by Anonymous
27

──────────────────────

\huge\tt\bf\underline{Solution}

A △ABC in which BL and CM are medians and ∠A = 90°

To Prove -

4(BL² + CM²) = 5BC²

In △BAC, ∠A = 90°

∴ BC² = AB² + AC² ────── (i)

[ By Pythagoras theorem ]

ㅤㅤ

In △BAL, ∠A = 90°

∴ BL² = AL² + AB²

[ By Pythagoras theorem ]

⇒ BL² = {(\frac{1}{2}\:AC)}^{2}{(AC)}^{2}2 + AB²

⇒ BL² ={(\frac{1}{4}AC)}^{2}(AC) 2 +AB²

⇒ 4BL² = AC² + 4AB² ───── (ii)

ㅤㅤ

In △CAM, ∠A = 90°

∴ CM² = AM² + AC²

⇒ CM² = {(\frac{1}{2}\:AB)}^{2}(AB)2 + AC²

⇒ CM² ={(\frac{1}{4}AC)}^{2}(AC)2 + AB² + AC²

⇒ 4CM² = AB² + 4AC² ───── (iii)

ㅤㅤㅤㅤ

On adding (ii) and (iii), we get

On adding (ii) and (iii), we get4(BL² + CM²) = 5(AB² + AC²).

ㅤㅤㅤㅤ

Hence, 4(BL² + CM²) = 5BC² [ using (i) ]

─────────────────────

Similar questions