BL and cm are medians of a DABC right angled
at Al IF BL= 3,cm = 4, the value of BC is
Answers
Answer:
BL is median
⇒ AL=CL=
2
1
AC →(1)
CM is median
⇒ AM = MB =
2
1
AB →(2)
InΔBAC
(BC)
2
=(AB)
2
+(AC)
2
InΔBAC
(BL)
2
=(AB)
2
+(
2
AC
)
2
4BL
2
=4AB
2
+(AC)
2
In ΔMAC,
(CM)
2
=(AM)
2
+(AC)
2
(CM)
2
=(
2
AB
)
2
+(AC)
2
4CM
2
=(AB)
2
+(AC)
2
NOW,(BC)
2
=(AB)
2
+(AC)
2
→(1)
4BC
2
=4(AB)
2
+(AC)
2
→(2)
4CM
2
=AB
2
+4AC
2
→(3)
ADD (2)&(3)
4BC
2
+4CM
2
=5AB
2
+5AC
2
4(BL
2
+CM
2
)=5BC
2
Hence proof
Step-by-step explanation:
hope it helps you!!
BL is median
⇒ AL=CL=
2
1
AC →(1)
CM is median
⇒ AM = MB =
2
1
AB →(2)
InΔBAC
(BC)
2
=(AB)
2
+(AC)
2
InΔBAC
(BL)
2
=(AB)
2
+(
2
AA
)
2
4BL
2
=4AB
2
+(AC)
2
In ΔMAC,
(CM)
2
=(AM)
2
+(AC)
2
(CM)
2
=(
2
AB
)
2
+(AC)
2
4CM
2
=(AB)
2
+(AC)
2
NOW,(BC)
2
=(AB)
2
+(AC)
2
→(1)
4BC
2
=4(AB)
2
+(AC)
2
→(2)
4CM
2
=AB
2
+4AC
2
→(3)
ADD (2)&(3)
4BC
2
+4CM
2
=5AB
2
+5AC
2
4(BL
2
+CM
2
)=5BC
2
Hence proof