Blood vessels, structure difference,,names and position of chief blood vessels and lymph vesses and function
Answers
Answer:
Explanation:
Blood vessels are key components of the systemic and pulmonary circulatory systems that distribute blood throughout the body. There are three major types of blood vessels: arteries that carry blood away from the heart, branching into smaller arterioles throughout the body and eventually forming the capillary network. The latter facilitates efficient chemical exchange between tissue and blood. Capillaries in turn merge into venules, then into larger veins responsible for returning the blood to the heart. The junctions between vessels are called anastomoses.
Arteries and veins are comprised of three distinct layers while the much smaller capillaries are composed of a single layer.
Tunica Intima
The inner layer (tunica intima) is the thinnest layer, formed from a single continuous layer of endothelial cells and supported by a subendothelial layer of connective tissue and supportive cells. In smaller arterioles or venules, this subendothelial layer consists of a single layer of cells, but can be much thicker in larger vessels such as the aorta. The tunica intima is surrounded by a thin membrane comprised of elastic fibers running parallel to the vessel. Capillaries consist only of the thin endothelial layer of cells with an associated thin layer of connective tissue.
Tunica Media
Surrounding the tunica intima is the tunica media, comprised of smooth muscle cells and elastic and connective tissues arranged circularly around the vessel. This layer is much thicker in arteries than in veins. Fiber composition also differs; veins contain fewer elastic fibers and function to control caliber of the arteries, a key step in maintaining blood pressure.
Tunica Externa
The outermost layer is the tunica externa or tunica adventitia, composed entirely of connective fibers and surrounded by an external elastic lamina which functions to anchor vessels with surrounding tissues. The tunica externa is often thicker in veins to prevent collapse of the blood vessel and provide protection from damage since veins may be superficially located.
Valve Function
A major structural difference between arteries and veins is the presence of valves. In arteries, the blood is pumped under pressure from the heart, so backflow cannot occur. However, passing through the capillary network results in a decrease in blood pressure, meaning that backflow of blood is possible in veins. To counteract this, veins contain numerous one-direction valves that prevent backflow.
Blood Vessel Function
Blood vessels carry nutrients and oxygen throughout the body and aid in gas exchange The circulatory system can be split into two sections, systemic and pulmonary. In the systemic circulatory system, highly oxygenated blood (95-100%) is pumped from the left ventricle of the heart and into the arteries of the body. Upon reaching the capillary networks, gas exchange between tissue and blood can occur, facilitated by the narrow walls of the capillaries. Oxygen is released from the blood into the tissues and carbon dioxide, a waste product of respiration, is absorbed. The capillaries merge into venules and then veins, carrying the deoxygenated blood (~75%) back to the right atrium of the heart at the end of the systemic circulatory system.
The much smaller pulmonary system reoxygenates the blood and facilitates the removal of carbon dioxide. After leaving the heart through the right ventricle, the blood passes through the pulmonary artery, the only artery in the body that contains deoxygenated blood, and into the capillary network within the lungs. The close association of the thin-walled alveolae with the equally thin-walled capillaries allows for rapid release of carbon dioxide and uptake of oxygen. After leaving the lungs through the pulmonary vein, the only vein which carries oxygenated blood, the blood enters the left atrium. This completes the pulmonary circulatory system.
HOPE IT HELPS YOU
MARK AS BRAINLIEST