Math, asked by gauribansal87, 4 months ago

BO and CO are Bisector of angleB and angle C respectively. if angle BOC = 120° find angle BAC​

Answers

Answered by mathdude500
3

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

  • A ️ABC in which BO & CO busects /_B & /_C and /_BOC = 120°.

TO FIND :-

  • /_BAC

Solution :-

Since BO bisects /_ABC

Therefore, /_ABO = /OBC = y (say)

Also, CO bisects /_ACB

Therefore, /_ACO = /OCB = z (say)

Now, in ️ BOC

/_AOB + /_BCO + /_CBO = 180° (Using angle sum property)

=> 120° + z + y = 180°

=> z + y = 60°......(1)

Now, in ️ ABC

/_BAC + /_ACB + /_ABC = 180°

/_BAC + 2y + 2z = 180°

/_BAC + 2(y + z) = 180°

/_BAC + 2 × 60° = 180° (Using (1))

/_BAC = 180° - 120°

=> /_BAC = 60°

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

\red{\textsf{(✪MARK BRAINLIEST✿)}} \\ \huge\fcolorbox{aqua}{aqua}{\red{FolloW ME}}

Answered by suman8615
1

Answer:

this is correct..................

Attachments:
Similar questions